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Classical versus
high-dimensional theory



Motivation

■ Main question: Why do we care about high-dimensional problems?
■ Some essential facts that motivate this discussion are the following:

1. New datasets arising in many economic contexts have a ”high-dimensional flavor”,
with d on the same order as, or possibly larger, than the sample size n

2. The classical theory that relies on large n, fixed d fails to provide useful theoretical
predictions.

3. Classical methods can break down dramatically in high-dimensional settings.

■ Let’s see an example to appreciate the challenges!
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What can go wrong in high dimensions?

■ Suppose we have a collection of random vectors x1, · · · ,xn

■ Each xi is drawn i.i.d from zero-mean distribution in Rd.
■ Our goal is to estimate Σ = cov(X)
■ Consider the following sample covariance estimator

Σ̂ := n−1
n∑

i=1
xix⊤

i

■ By construction, the sample covariance matrix Σ̂ is an unbiased estimate,
meaning E[Σ̂] = Σ
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What can go wrong in high dimensions?

■ A classical analysis considers the behavior of the sample covariance matrix as n
increases while d stays fixed.

■ We argue that the sample covariance matrix is a consistent estimate.
■ Question: Is this type of consistency preserved if we allow the dimension d to

tend to infinity?
■ Suppose that we allow both n and d increase with their ratio remaining fixed, say

d/n = α ∈ (0,1)
■ Let Σ = Id with each xi ∼ N(0, Id) for i = 1, · · · ,n
■ Using these n samples, we generated the sample covariance matrix, and then

computed its vector of eigenvalues γ(Σ̂) ∈ Rd, say arranged in non-increasing
order as

γmax(Σ̂) = γ1(Σ̂) ≥ γ2(Σ̂) ≥ · · · ≥ γd(Σ̂) = γmin(Σ̂) ≥ 0
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Empirical Distribution of eigenvalues γ(Σ̂)with α = 0.00375
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Empirical Distribution of eigenvalues γ(Σ̂)with α = 0.2
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What can help us in the high-dimensional setting?

■ Much of high-dimensional statistics involves constructing models of
high-dimensional phenomena that consider some implicit form of low-dimensional
structure!

■ What types of low-dimensional structures might be appropriate for modeling
covariance matrices problems?

■ If we assume that the matrix is diagonal, we can improve by imputing zeros to
non-diagonal elements

■ ⇒ Sparsity!
■ Apply some form of thresholding by

Tλ(x) =
{
x if |x| > λ

0 otherwise

■ Let Σ̃ := Tλn(Σ̂) with λn =
√

2log(d)
n
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Thresholding Empirical Distribution of γ(Σ̂)with α = 0.2
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What is the non-asymptotic viewpoint?

■ From our previous example, we can show that the maximum eigenvalue γmax(Σ̂)

satisfies the upper deviation inequality

P[(γmax(Σ̂) ≥ (1+
√

d/n+ δ)2] ≤ e−nδ2/2

■ Results of this type are what we tail bounds or concentration inequalities, and are
the primary focus of non-asymptotic theory in high-dimensional statistics.

■ The pair (n,d) is viewed as fixed, and high probability statements are made as a
function of them.
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Appetizer for econometrics

■ Empirical Research involves crucial choices:
▶ Functional forms
▶ Selection of control variables
▶ Choice of instruments

■ In causal inference we consider the following model to estimate average
treatment effect τ

Yi = Diτ + X′iβ0 + εi, with E [εi] = 0 and E [εi | Di, Xi] = 0

where Xi is a vector of p exogenous control variables, being possible p ≫ n.
■ Large dimension of Xi opens the door for selection methods such as the Lasso.
■ Or even further, suppose we have access to a possibly large number of

instrumental variables Zi, all satisfying E[εi | Zi] = 0 (e.g., Judge IV).
■ How do we deal with this?
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Concentration Inequalities



Why concentration inequalities?

■ Concentration inequalities are arguably some of the most important tools in
modern statistical learning theory.

■ Develop tools to show results that formalize the intuition for these statements:
1. X1 + · · ·+ Xn concentrates around E[X1 + · · ·+ Xn]
2. More general, f(X1, · · · , Xn) concentrates around E[f(X1, · · · , Xn)]

■ We are interested in finite sample results and they usually take the form of
two-sided bounds for the tails of deviations of a function from its mean

P [|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)]| ≥ t] ≤ something small
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Going back to the basics: Classical Bounds

■ The most elementary tail bound is the Markov’s inequality.

Definition
Given a non-negative random variable X with finite mean, we have an upper tail bound

P[X ≥ t] ≤ E[X]
t for all t > 0

Definition
For a random variable X that also has a finite variance, we define Chebyshev’s
inequality as:

P[|X− µ| ≥ t] ≤ var(X)
t2 for all t > 0.

where µ = E[X].

■ There are various extensions of Markov’s inequality applicable to high orders of
the form |X− µ|k such that P[|X− µ| ≥ t] ≤ E[|X−µ|k]

tk . 12



Hoeffding’s inequality

Let a sum of i.i.d symmetric Bernoulli random variables

Definition (Symmetric Bernoulli RV)
A random variable X has symmetric Bernoulli distribution (also called Rademacher
distribution) if it takes values -1 and 1 with probabilities 1/2 each, i.e.

P{X = −1} = P{X = 1} =
1
2

Theorem (Hoeffding’s Inequality)
Let X1, . . . , XN be independent symmetric Bernoulli random variables, and
a = (a1, . . . , aN) ∈ RN. Then, for any t ≥ 0, we have

P

{ N∑
i=1

aiXi ≥ t
}

≤ exp

(
− t2
2∥a∥22

)
.
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General Hoeffding’s inequality

Theorem (Hoeffding’s inequality for bounded RV)
Let X1, . . . , XN be independent random variables. Assume that Xi ∈ [mi,Mi] for every i.
Then, for any t > 0, we have

P

{ N∑
i=1

(Xi − EXi) ≥ t
}

≤ exp

(
− 2t2∑N

i=1 (Mi −mi)
2

)

Remark
Unlike the classical limit theorems of Probability Theory, Hoeffding’s inequality is
non-asymptotic in the sense that it holds for all fixed N as opposed to N → ∞. The larger
N, the stronger inequality becomes.
The non-asymptotic nature of concentration inequalities like Hoeffding makes them
attractive in applications in data science, where N often corresponds to sample size.
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Applications?

■ Widely used in statistical learning theory!
■ In Supervised ML, Given n training samples, we can state bounds on the

difference between the observed and true error rates for any classifier g
■ In Online Learning, algorithms update their models sequentially as new data

becomes available.
■ Hoeffding’s Inequality can be used to make statements about how quickly the

average loss of the model converges to the expected (true) average loss.
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FromMarkov to Chernoff

■ We can generalize Markov’s inequality for higher central moments of order k
■ Same procedure can be applied to functions other than polynomials |X− µ|k.
■ Suppose a RV X with mgf in a neighborhood of zero, meaning that there is some

constant b > 0 such that the function φ(λ) = E
[
eλ(x−µ)

]
exists for all λ ≤ |b|.

■ We may apply Markov’s inequality to the random variable Y = eλ(X−µ)

■ Get the upper bound

P[(X− µ) ≥ t] = P
[
eλ(X−µ) ≥ eλt

]
≤

E
[
eλ(X−µ)

]
eλt

Definition (Chernoff Bound)
Optimizing our choice of λ to obtain the tightest result yields the Chernoff bound
namely, the inequality

logP[(X− µ) ≥ t] ≤ inf
λ∈[0,b]

{
logE

[
eλ(X−µ)

]
− λt

}
.

16



Sub-Gaussian Variables

■ The form of the tail bound obtained by the Chernoff approach depends on the
growth rate of the mgf.

■ Then we can classify RV in terms of their mgf.

Example
Let X ∼ N

(
µ, σ2) be a Gaussian random variable with mean µ and variance σ2. We

know that X has the mgf

E
[
eλX
]
= eµλ+σ2λ2

2 , valid for all λ ∈ R.

Substituting this expression into the optimization problem defining the optimized
Chernoff bound, we obtain

inf
λ≥0

{
logE

[
eλ(X−µ)

]
− λt

}
= inf

λ≥0

{
λ2σ2

2 − λt
}

= − t2
2σ2 ,
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Sub-Gaussian Variables

■ We can conclude that any X ∼ N
(
µ, σ2) RV satisfies the upper deviation inequality

P[X ≥ µ+ t] ≤ e−
t2
2σ2

■ We can introduce the following definition

Definition
A random variable X with mean µ = E[X] is sub-Gaussian if there is a positive number
σ such that

E
[
eλ(X−µ)

]
≤ eσ2λ2/2 for all λ ∈ R.

■ Combining our knowledge about Chernoff and sub-Gaussian, we claim

Proposition
Any sub-Gaussian variable satisfy the concentration inequality

P[X ≥ µ+ t] ≤ 2e−
t2
2σ2
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Sub-Gaussian Variables

■ Of course there exists sub-Gaussian variables that are non-Gaussian.
Example
A Rademacher random variable ε takes the values {−1,+1} equiprobably. We claim
that it is sub-Gaussian with parameter σ = 1. By taking expectations and using the
power-series expansion for the exponential, we obtain

E
[
eλε
]
=

1
2
{
e−λ + eλ

}
=

1
2

{ ∞∑
k=0

(−λ)k

k! +
∞∑
k=0

(λ)k

k!

}

=
∞∑
k=0

λ2k

(2k)!

≤ 1+
∞∑
k=1

λ2k

2kk!

= eλ2/2
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What about functions of random variables?

■ We can apply the same principle to functions f of independent RV Xi
■ f (X1, . . . , Xn) concentrates around E [f (X1, . . . , Xn)].

Theorem (McDiarmid’s inequality)
Suppose f : Rn → R satisfies the bounded difference condition: there exist constants
c1, . . . , cn ∈ R such that for all real numbers x1, . . . , xn and x′i ,

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)| ≤ ci.

(Intuitively, this tells us that f is not overly sensitive to arbitrary changes in a single
coordinate.) Then, for any independent random variables X1, . . . , Xn,

Pr [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c2i

)
.

■ Moreover, f (X1, . . . , Xn) is O
(√∑n

i=1 c2i
)
-sub-Gaussian.
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McDiarmid’s inequality

Is this connected with previous concepts?

Remark
McDiarmid’s inequality is a generalization of Hoeffding’s inequality with mi ≤ xi ≤ Mi and

f (x1, . . . , xn) =
n∑

i=1
xi
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Lipschitz Functions of Gaussian Variables

Definition
A function f : Rn → R is L-Lipschitz with respect to the ℓ2-norm if there exists a
non-negative constant L ∈ R such that for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L∥x− y∥2.

Theorem (Sub-Gaussianity of Lipschitz functions)
Suppose f : Rn → R is L-Lipschitz with respect to Euclidean distance, and let
X = (X1, . . . , Xn), where X1, . . . , Xn iid∼ N (0,1). Then for all t ∈ R,

Pr[|f(X)− E[f(X)]| ≥ t] ≤ 2 exp
(
− t2
2L2

)
.

It guarantees that any L-Lipschitz function of a standard normal, regardless of the
dimension, exhibits concentration like a scalar Normal variable with variance L2.
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Bounds Via Uniform Convergence

■ A central goal in ML theory is to bound the excess risk L(θ̂)− L (θ∗)
■ Uniform convergence is a property of a parameter set Θ, which gives us bounds

of the form
Pr[|L̂(θ)− L(θ)| ≥ ε] ≤ δ; , ∀θ ∈ Θ

■ How we can do it? Concentration inequalities!
■ We can use union-bound inequality and Hoeffding’s inequality.
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From Uniform Convergence to Error Bounds
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High-Dimension, Sparsity and
the Lasso



Model selection via Lasso

■ Model selection and parsimony among covariates have a particular echo in
statistics and econometrics

■ In empirical work, applied researchers often select variables by trial and error.
■ A popular machinery to perform variable selection is the Lasso (Tibshirani 1994).
■ Denote L(β) = n−1∑n

i=1
(
Yi − X′iβ

)2 the mean-square loss function.
■ The lasso estimator is given by

β̂ ∈ argmin
β∈Rp

L(β) + λn∥β∥1

■ λn sets the trade-off between fit and sparsity.
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Strong Assumptions

Assumption (Sparsity in Normal Linear Model)
Let the iid sequence of random variables (Yi, Xi)ni=1. The dimension of the vector Xi is
denoted p and is assumed to be larger than 1 and allowed to be p > n. We assume the
following linear relation:

Yi = X′iβ0 + εi

with εi ∼ N
(
0, σ2) , εi ⊥ Xi,

∑p
j=1 1

{
βj ̸= 0

}
≤ s < p. The covariates are bounded almost

surely maxi=1,...,n ∥Xi∥∞ ≤ M
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Strong Assumptions

■ As we see in our introductory example, when p > n, Σ̂ can be degenerated in the
sense that is no positive definite.

■ We need to restrict the eigenvalues: all square sub-matrices contained in the
empirical Gram matrix of dimension no larger than s should have a positive
minimal eigenvalue.

■ For a non-empty subset S ⊂ {1, . . . ,p} and α > 0, define the set:

C[S, α] := {v ∈ Rp : ∥vSC∥1 ≤ α ∥vS∥1 , v ̸= 0}

Assumption (Restricted Eigenvalues)

Let Σ̂ := n−1∑n
i=1 XiX′i , the empirical Gram matrix, which satisfies

κ2α(Σ̂) := min
S⊂{1,...,p}

|S|≤s

min
δ∈C[S,α]

δ′Σ̂δ

∥δS∥22
> 0
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Some theory of Lasso

Lemma (Concentration Inequality for Gaussian RV)

Consider gaussian random variables such that for j = 1, . . . ,p, ξj ∼ N
(
0, σ2

j

)
and set

L = maxj=1,...,p σj Then:

E
[

max
j=1,...,p

∣∣ξj∣∣] ≤ L
√
2 log(2p)

sketch of the proof: Use the fact that ξ is sub-Gaussian, some algebra and Jensen
Inequality :)
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Consistency of Lasso

Theorem
Under previous strong assumptions and restricted eigenvalue condition with C [S0,3], the
Lasso estimator with tuning parameter λn = (4σM/α)

√
2 log(2p)/n, where α ∈ (0,1),

verifies with probability greater than 1− α :

∥∥∥β̂ − β0

∥∥∥
1
≤ 42σM

ακ23(Σ̂)

√
2s2 log(2p)

n

Key takeaway: Lasso converges in ℓ1 to the true value β0 at rate s
√

log(p)/n. The rate
of convergence of OLS under full knowledge of sparsity is s/

√
n. Therefore, there is a

”price” to pay for ignorance which manifests itself by this
√
log(p) term.
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Consistency of Lasso

sketch of the proof:

1. Since β̂ is a solution of the minimization problem

L(β̂) + λn∥β̂∥1 ≤ L (β0) + λn ∥β0∥1
2. Concentration Inequality for Gaussian RV + Markov’s Inequality
3. Separate β = βS0 + βSC0
4. Use the restricted eigenvalue of the Gram matrix and Cauchy-Schwarz inequality

to get

(
β̂ − β0

)′
Σ̂
(
β̂ − β0

)
≥ κ23(Σ̂)

∥∥∥β0,S0 − β̂S0

∥∥∥2
2
≥ κ23(Σ̂)

∥∥∥β0,S0 − β̂S0

∥∥∥2
1

s
5. After some algebra get that with probability greater than 1− α:∥∥∥β0 − β̂

∥∥∥
1
≤ 42σM

ακ23(Σ̂)

√
2s2 log(2p)

n
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