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Motivation

Main question: Why do we care about high-dimensional problems?
Some essential facts that motivate this discussion are the following:

1. New datasets arising in many economic contexts have a "high-dimensional flavor”,
with d on the same order as, or possibly larger, than the sample size n
2. The classical theory that relies on /arge n, fixed d fails to provide useful theoretical

predictions.
3. Classical methods can break down dramatically in high-dimensional settings.

Let's see an example to appreciate the challenges!
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What can go wrong in high dimensions? ¢} EMORY

Suppose we have a collection of random vectors Xy, - -+ , X,
Each x; is drawn i.i.d from zero-mean distribution in RY.
Our goal is to estimate = cov(X)

Consider the following sample covariance estimator
n
To=n") xx'
i=1

By construction, the sample covariance matrix ¥ is an unbiased estimate,
meaning E[¥] = =
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What can go wrong in high dimensions? Bl S

A classical analysis considers the behavior of the sample covariance matrix as n
increases while d stays fixed.

We argue that the sample covariance matrix is a consistent estimate.

Question: Is this type of consistency preserved if we allow the dimension d to
tend to infinity?

Suppose that we allow both n and d increase with their ratio remaining fixed, say
d/n=aec(0,1)

Let ¥ = I, with each x; ~ N(0,I;)fori=1,---,n

Using these n samples, we generated the sample covariance matrix, and then

computed its vector of eigenvalues v(X) € RY, say arranged in non-increasing
order as

Amax(E) = 11(E) = 1(E) > -+ > 74(E) = Ymin(E) > 0
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Empirical Distribution of eigenvalues () with o = 0.00375

Empirical Distribution of Eigenvalues for (n, d) = (4000, 15), alpha = 0.00375
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Empirical Distribution of eigenvalues n,(}A:) with o« =0.2 POR

Empirical Distribution of Eigenvalues for (n, d) = (4000, 800), alpha = 0.2
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What can help us in the high-dimensional setting? B[O

Much of high-dimensional statistics involves constructing models of
high-dimensional phenomena that consider some implicit form of low-dimensional
structure!

What types of low-dimensional structures might be appropriate for modeling
covariance matrices problems?

If we assume that the matrix is diagonal, we can improve by imputing zeros to
non-diagonal elements

= Sparsity!

Apply some form of thresholding by

T\ () = {x if |X] > A

0 otherwise

Let £ := T, (£) with \, = /2@

n



Thresholding Empirical Distribution of (X) with o = 0.2 EMORY

o Empirical Distribution of Eigenvalues for (n, d) = (4000, 800), alpha = 0.2

50 1

40

30 II

Density

209

10 4

T T T T T T T
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalue Value



What is the non-asymptotic viewpoint? POR

~

From our previous example, we can show that the maximum eigenvalue ., (X)
satisfies the upper deviation inequality

P[(vmax(Z) = (1 + 1/d/n +6)?] < o—N9%/2

Results of this type are what we tail bounds or concentration inequalities, and are
the primary focus of non-asymptotic theory in high-dimensional statistics.

The pair (n,d) is viewed as fixed, and high probability statements are made as a
function of them.
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Appetizer for econometrics (%¢) EMORY

Empirical Research involves crucial choices:

Functional forms
Selection of control variables
Choice of instruments

In causal inference we consider the following model to estimate average
treatment effect =

Y, =D —|—X,/'50 +e, WithE[g]=0andE|[g | D;, Xj] =0

where X; is a vector of p exogenous control variables, being possible p > n.
Large dimension of X; opens the door for selection methods such as the Lasso.

Or even further, suppose we have access to a possibly large number of
instrumental variables Z;, all satisfying E[¢; | Z;] = 0 (e.g., Judge V).
How do we deal with this?

10



Concentration Inequalities
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Why concentration inequalities? &) BuIok

Concentration inequalities are arguably some of the most important tools in
modern statistical learning theory.
Develop tools to show results that formalize the intuition for these statements:

1. X1 + -+ + Xp concentrates around E[X7 + - - - + Xy]
2. More general, f(X1,--- ,Xn) concentrates around E[f(X1, - -+ , Xn)]

We are interested in finite sample results and they usually take the form of
two-sided bounds for the tails of deviations of a function from its mean

P[If(X1,...,X) —E[f(Xq,...,Xn)]| > t] < something small

11
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Going back to the basics: Classical Bounds
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The most elementary tail bound is the Markov’s inequality.

Definition
Given a non-negative random variable X with finite mean, we have an upper tail bound
PX>1t] < [X] forallt>0
V.
Definition

For a random variable X that also has a finite variance, we define Chebyshev’s
inequality as:
PIX — u| >4 < Va;§X> forall t > 0.

where = E[X].

.

There are various extensions of Markov's inequality applicable to high orders of

the form |X — p|¥ such that P[|X — u| > t] < E”Xt;k’”k]. 12



Hoeffding's inequality

Let a sum of i.i.d symmetric Bernoulli random variables

Definition (Symmetric Bernoulli RV)

A random variable X has symmetric Bernoulli distribution (also called Rademacher
distribution) if it takes values -1 and 1 with probabilities 1/2 each, i.e.

]P’{X:—1}:]P’{X:1}:1§

.

Theorem (Hoeffding's Inequality)

Let X1, ..., Xy be independent symmetric Bernoulli random variables, and
a=(ai,...,an) € RN, Then, for any t > 0, we have

N tz
2

i=1

.

13



General Hoeffding's inequality

Theorem (Hoeffding's inequality for bounded RV)

Let X1, ..., Xy be independent random variables. Assume that X; € [m;, Mj] for every i.
Then, for any t > 0, we have

p{i(x £x) t} ( 2t )
i—EX) >ty <exp| ——f——
i=1 P E:{V:1 (M; — mi)2

.

Unlike the classical limit theorems of Probability Theory, Hoeffding’s inequality is
non-asymptotic in the sense that it holds for all fixed N as opposed to N — oc. The larger
N, the stronger inequality becomes.

The non-asymptotic nature of concentration inequalities like Hoeffding makes them
attractive in applications in data science, where N often corresponds to sample size.

14



UNIVERSITY

Applications? EMORY

Widely used in statistical learning theory!

In Supervised ML, Given n training samples, we can state bounds on the
difference between the observed and true error rates for any classifier g

In Online Learning, algorithms update their models sequentially as new data
becomes available.

Hoeffding's Inequality can be used to make statements about how quickly the
average loss of the model converges to the expected (true) average loss.

15



From Markov to Chernoff EMORY
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We can generalize Markov’s inequality for higher central moments of order k
Same procedure can be applied to functions other than polynomials [X — p|¥.
Suppose a RV X with mgf in a neighborhood of zero, meaning that there is some
constant b > 0 such that the function ¢(\) = E [e**~#)] exists for all A < |b|.
We may apply Markov’s inequality to the random variable Y = e**=#)

Get the upper bound

A(X=p)
P{(X—p)>t]=P [e“x*“) > e“} < %

Definition (Chernoff Bound)

Optimizing our choice of X to obtain the tightest result yields the Chernoff bound
namely, the inequality

logP[(X — p) >t < )\ei?ofb] {IogE [e’\(x_“)} - )\t} .

16



Sub-Gaussian Variables EMORY

The form of the tail bound obtained by the Chernoff approach depends on the
growth rate of the mgf.
Then we can classify RV in terms of their mgf.

Let X ~ N (u,0?) be a Gaussian random variable with mean 1 and variance o2. We
know that X has the mgf

2252 ]
E [eM] = er 7= valid for all A € R.

Substituting this expression into the optimization problem defining the optimized
Chernoff bound, we obtain

Pt 2
. AX=p) | _ — f _ = — )
/{gfo {IogE [e ] )\t} /\Igo { 2 )\t} 202’

17



Sub-Gaussian Variables ¢ EMORY

We can conclude that any X ~ N (u, 02) RV satisfies the upper deviation inequality

2

PX>pu+t] <e 22

We can introduce the following definition

Definition

A random variable X with mean u = E[X] is sub-Gaussian if there is a positive number
o such that
242
E [ek(x‘“)} <e” /2 forall A cR.

Combining our knowledge about Chernoff and sub-Gaussian, we claim

Proposition

Any sub-Gaussian variable satisfy the concentration inequality

2
PIX > pu+1t] <2 22 .
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Of course there exists sub-Gaussian variables that are non-Gaussion.

A Rademacher random variable ¢ takes the values {—1,+1} equiprobably. We claim
that it is sub-Gaussian with parameter o = 1. By taking expectations and using the
power-series expansion for the exponential, we obtain

1 X (K €2 k
E[eﬂ—z{euek}—;{Z( W50 }

19



What about functions of random variables? EMORY

We can apply the same principle to functions f of independent RV X;
f(X1,...,Xp) concentrates around E [f (X1, ..., Xy)]-

Theorem (McDiarmid's inequality)

Suppose f : R" — R satisfies the bounded difference condition: there exist constants
C1,...,Cn € Rsuch that for all real numbers x4, ..., x, and x;,

X1, Xn) — fF(X1, .o X1, X], Xias - - -, Xn)| < G

(Intuitively, this tells us that f is not overly sensitive to arbitrary changes in a single
coordinate.) Then, for any independent random variables X1, ..., Xy,

2t
Prif(Xs,....Xn) —E[f(X1,...,Xn)] > t] <exp <—n—> .

i 6
Moreover, f(X1,...,X,) is O (\ /S0, c,2>-sub—Gaussian.

i

20



McDiarmid’s inequality POR

Is this connected with previous concepts?

McDiarmid's inequality is a generalization of Hoeffding’s inequality with m; < x; < M; and

21



Lipschitz Functions of Gaussian Variables

A function f: R” — R is L-Lipschitz with respect to the ¢,-norm if there exists a
non-negative constant L € R such that for all x,y € R,

f) = fW)I < Llix = yll2-

Theorem (Sub-Gaussianity of Lipschitz functions)

Suppose f: R" — R is L-Lipschitz with respect to Euclidean distance, and let
X=(X1,...,Xn), where Xy, ..., Xp x N(0,1). Then forall t € R,

2
P00 ~ B0 > 1 < 269 (53 )

It guarantees that any L-Lipschitz function of a standard normal, regardless of the
dimension, exhibits concentration like a scalar Normal variable with variance L2.
22



Bounds Via Uniform Convergence &) EMORY
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A central goal in ML theory is to bound the excess risk L(A) — L (6*)

Uniform convergence is a property of a parameter set ©, which gives us bounds
of the form

Pr{L(6) — L(0)| > €] < 6;, ¥ € ©
How we can do it? Concentration inequalities!

We can use union-bound inequality and Hoeffding’s inequality.

23



From Uniform Convergence to Error Bounds
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L L
Al . 1 N /
D\ - . Ll
= >0 A - /0
(a) (b)
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High-Dimension, Sparsity and
the Lasso
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Model selection via Lasso
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Model selection and parsimony among covariates have a particular echo in
statistics and econometrics

In empirical work, applied researchers often select variables by trial and error.
A popular machinery to perform variable selection is the Lasso (Tibshirani 1994).
Denote L(B) =n—" Y"1, (V; —Xjﬁ)z the mean-square loss function.

The lasso estimator is given by

B € argminL(B) + Anl|B|l1
BERP

A\n sets the trade-off between fit and sparsity.

25



Strong Assumptions POR

Assumption (Sparsity in Normal Linear Model)

Let the iid sequence of random variables (Y;,X;);_,. The dimension of the vector X; is
denoted p and is assumed to be larger than 1 and allowed to be p > n. We assume the
following linear relation:

Yi=XiBo + ¢

with e; ~ N (0,02) ,&; L X;, Zl‘.’:1 1{B; # 0} <s < p. The covariates are bounded almost
surely maxj_1.

ooag

26
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As we see in our introductory example, when p > n, ¥ can be degenerated in the
sense that is no positive definite.

We need to restrict the eigenvalues: all square sub-matrices contained in the
empirical Gram matrix of dimension no larger than s should have a positive
minimal eigenvalue.

For a non-empty subset S c {1,...,p} and a > 0, define the set:

C[S,a] :={v e RP : |Ivscll; < or|lvs]ly ,v # O}
Assumption (Restricted Eigenvalues)

Lety :=n~" S°14 XiX[, the empirical Gram matrix, which satisfies

o
N Y
2(2) min min 0 62

SC{1,...p} 6€C[S.al ||ds )5
IS|<s

27



Some theory of Lasso POR

Lemma (Concentration Inequality for Gaussian RV)

Consider gaussian random variables such that forj=1,....p,& ~ N (0, ajz) and set

L = maxj_1,

000g

E L_Téfp \éj@ < L\/2log(2p)

sketch of the proof: Use the fact that ¢ is sub-Gaussian, some algebra and Jensen
Inequality :)

28



Consistency of Lasso POR

Under previous strong assumptions and restricted eigenvalue condition with C [Sp, 3], the
Lasso estimator with tuning parameter A\, = (4oM/a)+/2log(2p)/n, where . € (0,1),
verifies with probability greater than 1 — «:

426M | 2s2log(2p)
K2(T) n

[5-5], <

Key takeaway: Lasso converges in ¢; to the true value gy at rate s\/log(p)/n. The rate
of convergence of OLS under full knowledge of sparsity is s/v/n. Therefore, there is a
"price” to pay for ignorance which manifests itself by this \/log(p) term.

29



Consistency of Lasso

w EMORY

UNIVERSITY

sketch of the proof:

1.

w

Since j is a solution of the minimization problem
L(B) + AnllBll1 < L (Bo) + n 1ol

Concentration Inequality for Gaussian RV + Markov's Inequality
Separate 3 = (s, + ﬁsg
Use the restricted eigenvalue of the Gram matrix and Cauchy-Schwarz inequality
to get

—~ 12
25) Hﬁo,so — Bs, :

2
> K
n—"E s

(3— ﬁo)/ T (B— 50) > k3(Z) Hﬁoso — Bs,

. After some algebra get that with probability greater than 1 — «:

420M  [2s2log(2p)
ar3(X) n

o7, <

30



Thanks!

¥ marcelo.ortiz@emory.edu
@ marcelortiz.com
¥ @marcelortizv
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