Uniform Law of Large Numbers

Marcelo Ortiz-Villavicencio

February 2, 2024 Econometrics Reading Group

1. Introduction

Uniform convergence of CDF Uniform law for more general function classes

2. A uniform law via Rademacher Complexity

3. Upper bounds on the Rademacher complexity VC dimension

Introduction

- In the previous chapter we pointed out some limitations of asymptotic analysis in high dimensions.
- In this chapter, we will turn our focus to *non-asymptotic analysis*, where we provide convergence guarantees without having the number of observations $n \rightarrow \infty$.
- Our focus in this lecture is a set of results called the *uniform law of large numbers*.
- These results represent a strengthening of the usual LLN, which applies to a fixed sequence of RV, to related laws that hold *uniformly* over collections of RV.
- Such uniform laws are of theoretical interest in *Empirical Process Theory*.
- Moreover, they also play an important role in understanding the behavior of different statistical estimators providing guarantees for bounds of the form:

$$\Pr\left[\sup_{h\in\mathcal{H}}|\hat{\mathcal{L}}(h)-\mathcal{L}(h)|\leq\epsilon
ight]\geq 1-\delta.$$

Some terminology from Empirical Process Theory

- A *stochastic process* is a collection of random variables $\{X(t), t \in T\}$ on the same probability space, indexed by an arbitrary set *T*.
- An *empirical process* is a stochastic process based on a random sample.
- Consider a random sample X_1, \ldots, X_n of independent draws from a probability measure *P* on an arbitrary sample \mathcal{X} .
- For a set *A*, we define the *empirical measure* (distribution) of *A* to be

$$\mathbb{P}_n(A) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(A)$$

where $\delta_x(A)$ is the *Dirac measure* (or point mass) that assigns mass 1 if $x \in A$ and zero elsewhere

An *Indicator function* is closely related to a Dirac.

Given some integrable function g, we may define the expectation functional γ_g via

$$\gamma_g(P) = \int g(x) dP(x) = \mathbb{E}[g(X)]$$

• We can think about the previous expression as its an *empirical integral*

$$\gamma_g(\mathbb{P}_n) = \int g(x) d\mathbb{P}_n(x) = \mathbb{E}_n[g(X)]$$

■ For any class \mathcal{F} of measurable functions $f : \mathcal{X} \mapsto \mathbb{R}$, an *empirical process* $\{\gamma_f(\mathbb{P}_n), f \in \mathcal{F}\}$ can be defined.

• Our goal is to show "how close" $\{\gamma_f(\mathbb{P}_n), f \in \mathcal{F}\}$ is to $\{\gamma_f(P), f \in \mathcal{F}\}$.

- The law of any scalar random variable *X* can be fully specified by its *cumulative distribution function* (CDF), whose value at any point $t \in \mathbb{R}$ is given by $F(t) := P(X \le t)$.
- Suppose a collection $\{X_i\}_{i=1}^n$ of *n* i.i.d. samples, each drawn according to the law specified by *F*.
- A natural estimate of *F* is the empirical CDF given by

$$\widehat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,n]} [X_i]$$

where $1_{(-\infty,t)}[x]$ is a $\{0,1\}$ -valued *indicator function* for the event $\{x \le t\}$.

Since the population CDF can be written as $F(t) = \mathbb{E} \left[\mathbb{1}_{(-\infty,t)}[X] \right]$, the empirical CDF is an *unbiased estimate*.

Uniform convergence of CDF

Glivenko-Cantelli

Given a pair of CDFs *F* and *G*, let us measure the distance between them using the *sup-norm*

$$|G - F||_{\infty} := \sup_{t \in \mathbb{R}} |G(t) - F(t)|$$

■ We can define then the *continuity* of a functional γ with respect to this norm. ■ More precisely, the functional γ is *continuous* at *F* in the sup-norm if, $\forall \epsilon > 0$, there

exists a $\delta > 0$ such that $||G - F||_{\infty} \le \delta$ implies that $|\gamma(G) - \gamma(F)| \le \epsilon$

Theorem (Glivenko-Cantelli)

For any distribution, the empirical CDF \hat{F}_n is a strongly consistent estimator of the population CDF in the uniform norm, meaning that

$$||\widehat{F}_n-F||_{\infty} \xrightarrow{a.s.} 0.$$

This notion is useful because, for any continuous functional, it reduces the consistency question to the issue of whether or not that difference converges to zero.

Uniform law for more general function classes

- Let's focus on a more general consideration of ULLN.
- Let \mathscr{F} be a class of integrable real-valued functions with domain X, and let $\{X_i\}_{i=1}^n$ be a collection of i.i.d. samples from some distribution \mathbb{P} over \mathcal{X} .
- Consider the random variable

$$\|\mathbb{P}_n-\mathbb{P}\|_{\mathscr{F}}:=\sup_{f\in\mathscr{F}}\left|\frac{1}{n}\sum_{i=1}^n f(X_i)-\mathbb{E}[f(X)]\right|,$$

which measures the absolute deviation between the sample average $\frac{1}{n} \sum_{i=1}^{n} f(X_i)$ and the population average $\mathbb{E}[f(X)]$, uniformly over the class \mathscr{F} .

Theorem

We say that \mathscr{F} is a Glivenko-Cantelli class for \mathbb{P} if $\|\mathbb{P}_n - \mathbb{P}\|_{\mathscr{F}}$ converges to zero in probability as $n \to \infty$.

Note: Not all classes of functions are Glivenko-Cantelli.

- These quantities are one of the main focus of methods based on *empirical risk minimization*.
- Consider an indexed family of probability distributions $\{\mathbb{P}_{\theta} \mid \theta \in \Omega\}$,
- Suppose we have access to *n* samples $\{X_i\}_{i=1}^n$, each sample lying in some space \mathcal{X} .
- Those samples are drawn i.i.d. according to a distribution \mathbb{P}_{θ^*} , for some *fixed* but *unknown* $\theta^* \in \Omega$. Here the index θ^* could lie within a *finite-dimensional space*, such as $\Omega = \mathbb{R}^d$, or could lie within some function class $\Omega = \mathscr{G}$, in which case the problem is nonparametric (i.e., *infinite-dimensional space*).
- A standard *decision-theoretic* approach to estimating θ^* is based on minimizing a **cost function** of the form $\theta \mapsto \mathcal{L}_{\theta}(X)$, which measures the "fit" between a parameter $\theta \in \Omega$ and the sample $X \in \mathcal{X}$.

Empirical Risk Minimization

Given the collection of *n* samples $\{X_i\}_{i=1}^n$, the principle of *empirical risk minimization* is based on the objective function (a.k.a. *empirical risk*)

$$\widehat{R}_{n}\left(heta, heta^{*}
ight):=rac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{ heta}\left(X_{i}
ight)$$

The empirical risk is contrasted with the *population risk*, where the expectation \mathbb{E}_{θ^*} is taken over a sample $X \sim \mathbb{P}_{\theta^*}$,

$$R(\theta, \theta^*) := \mathbb{E}_{\theta^*} [\mathcal{L}_{\theta}(X)],$$

- In practice, one minimizes the empirical risk over some *subset* Ω_0 of the full space Ω , thereby obtaining some estimate $\hat{\theta}$.
- The question is how to bound the *excess risk*, measured in terms of the population quantities namely the difference

$$E(\widehat{\theta},\theta^*) := R(\widehat{\theta},\theta^*) - \inf_{\theta \in \Omega_0} R(\theta,\theta^*).$$

How to bound the excess risk?

Our goal is to develop methods for controlling the *excess risk*.
 Suppose there exists some θ₀ ∈ Ω₀ such that

$$R(\theta_0,\theta^*) = \inf_{\theta \in \Omega_0} R(\theta,\theta^*)$$

Then, the excess risk can be decomposed as

$$E(\widehat{\theta},\theta^*) = \underbrace{\{R(\widehat{\theta},\theta^*) - \widehat{R}_n(\widehat{\theta},\theta^*)\}}_{T_1} + \underbrace{\{\widehat{R}_n(\widehat{\theta}_0,\theta^*) - \widehat{R}_n(\theta_0,\theta^*)\}}_{T_2 \le 0} + \underbrace{\{\widehat{R}_n(\theta_0,\theta^*) - R(\theta_0,\theta^*)\}}_{T_3}\}$$

Γ₂ is non-positive, since $\hat{\theta}$ minimizes the empirical risk over Ω_0 .

Because θ_0 is an unknown but non-random quantity, and recalling the definition of empirical risk, T_3 can be rewritten as

$$T_{3} = \left[\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{\theta_{0}}(X_{i})\right] - \mathbb{E}_{X}\left[\mathcal{L}_{\theta_{0}}(X)\right]$$

corresponding to the deviation of a sample mean from its expectation for the random variable $\mathcal{L}_{\theta_0}(X)$.

How to bound the excess risk?

■ *T*₁ can be written in a similar way, namely as the difference

$$T_{1} = \mathbb{E}_{X} \left[\mathcal{L}_{\hat{\theta}}(X) \right] - \left[\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\hat{\theta}}(X_{i}) \right].$$

- This quantity is more challenging to control, because the parameter $\hat{\theta}$ (in contrast to θ_0) is now random, and depends on the samples $\{X_i\}_{i=1}^n$.
- Hence, controlling T_1 requires a *stronger* result, such as a *uniform law of large numbers* over the cost function class $\mathscr{L}(\Omega_0) := \{x \mapsto \mathcal{L}_{\theta}(x), \theta \in \Omega_0\}.$
- With this notation, we have

$$T_{1} \leq \sup_{\theta \in \Omega_{0}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\theta} \left(X_{i} \right) - \mathbb{E}_{X} \left[\mathcal{L}_{\theta} (X) \right] \right| = \left\| \mathbb{P}_{n} - \mathbb{P} \right\|_{\mathcal{L}(\Omega_{0})}$$

This same quantity also dominates *T*₃, we conclude that the *excess risk* is at most

$$2 \|\mathbb{P}_n - \mathbb{P}\|_{\mathfrak{L}(\Omega_0)}$$

A uniform law via Rademacher Complexity

Uniform Law via Rademacher Complexity

- Let me now turn to the technical details of deriving such results.
- An important concept that underlies the study of uniform laws is the *Rademacher complexity* of the function class *F*.
- For any fixed collection $x_1^n := (x_1, x_2, \dots, x_n)$ of points, consider the subset of \mathbb{R}^n given by

$$\mathscr{F}(x_1^n) := \{(f(x_1), f(x_2), \cdots, f(x_n)) \mid f \in \mathscr{F}\}$$

■ The set $\mathscr{F}(x_1^n)$ corresponds to all those vectors in \mathbb{R}^n that can be realized by applying a function $f \in \mathscr{F}$ to the collection (x_1, x_2, \dots, x_n) and the *empirical Rademacher complexity* is given by

$$\mathcal{R}\left(\mathscr{F}\left(x_{1}^{n}\right)/n\right):=\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathscr{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right].$$

Given a collection $X_1^n := \{X_i\}_{i=1}^n$ of random samples, then the *empirical Rademacher complexity* $\mathcal{R}(\mathscr{F}(X_1^n)/n)$ is a random variable.

Rademacher Complexity

Taking its expectation yields the Rademacher complexity of the function class \mathscr{F} we get

$$\mathcal{R}_{n}(\mathscr{F}) := \mathbb{E}_{X}\left[\mathcal{R}\left(\mathscr{F}\left(X_{1}^{n}\right)/n\right)\right] = \mathbb{E}_{X,\varepsilon}\left[\sup_{f\in\mathscr{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(X_{i})\right|\right]$$

- Note that the *Rademacher complexity* is the average of the maximum correlation between the vector $(f(X_1), \ldots, f(X_n))$ and the "noise vector" $(\varepsilon_1, \ldots, \varepsilon_n)$, where the maximum is taken over all functions $f \in \mathscr{F}$.
- Intuition: a function class is extremely large if we can always find a function that has a high correlation with a randomly drawn noise vector. Conversely, when the Rademacher complexity decays as a function of sample size, then it is impossible to find a function that correlates very highly in expectation with a randomly drawn noise vector.
- Simple words: If the $\mathcal{R}_n(\mathscr{F})$ is small, it suggests that the function class is not very sensitive to random noise in the data. In other words, small $\mathcal{R}_n(\mathscr{F})$ often implies better generalization performance in a learning algorithm.

Rademacher complexity & Glivenko-Cantellii

- There is a connection between *Rademacher complexity* and the *Glivenko-Cantelli* theorem.
- In particular, any bounded function class \mathscr{F} , the condition $\mathcal{R}_n(\mathscr{F}) = o(1)$ implies the *Glivenko-Cantelli* property.

Theorem

For any b-uniformly bounded class of functions \mathscr{F} , any positive integer $n \ge 1$ and any scalar $\delta \ge 0$, we have

$$\mathbb{P}_n - \mathbb{P}\|_{\mathscr{F}} \leq 2\mathcal{R}_n(\mathscr{F}) + \delta$$

with probability at least $1 - \exp\left(-\frac{n\delta^2}{2b^2}\right)$. Consequently, as long as $\mathcal{R}_n(\mathscr{F}) = o(1)$, we have $\|\mathbb{P}_n - \mathbb{P}\|_{\mathscr{F}} \xrightarrow{a.s.} 0$.

This is nothing more than a tail bound for the probability that the RV ||ℙ_n − ℙ||_ℱ deviates *substantially above* a multiple of the Rademacher complexity.
 Therefore, we need to obtain upper bounds on the R_n(ℱ)

Upper bounds on the Rademacher complexity

- To make the previous theorem useful, we require methods for *upper bounding* the Rademacher complexity.
- There are several methods to do so, ranging from simple union bounds (suitable for finite function classes) to more advanced techniques involving *metric entropy* and *chaining* (I will skip this due to time constraints, sorry).
- Instead, we gonna focus on more "elementary" techniques that apply for function classes with *polynomial discrimination* and *Vapnik-Chervonenski* classes.

• It is relatively straightforward to establish uniform laws for function classes with *polynomial discrimination*

Our interest in function classes for which the *cardinality* grows only as a polynomial function of sample size.

Definition (Polynomial discrimination)

A class \mathscr{F} of functions with domain \mathscr{X} has polynomial discrimination of order $v \ge 1$ if, for each positive integer n and collection $x_1^n = \{x_1, \ldots, x_n\}$ of n points in \mathscr{X} , the set $\mathscr{F}(x_1^n)$ has *cardinality upper bounded*

$$\operatorname{card}\left(\mathscr{F}\left(x_{1}^{n}
ight)
ight)\leq\left(n+1
ight)^{v}$$

Controlling Rademacher Complexity

- Previous property provides a straightforward approach to controlling the Rademacher complexity.
- For any set $S \subset \mathbb{R}^n$, we use $D(S) := \sup_{x \in S} ||x||_2$ to denote its *maximal width* in the ℓ_2 -norm.

Lemma (Upper bound on Rademacher Complexity)

Suppose that \mathscr{F} has polynomial discrimination of order v. Then for all positive integers n and any collection of points $x_1^n = (x_1, \ldots, x_n)$,

$$\underbrace{\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathscr{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right]}_{\mathcal{R}\left(\mathscr{F}(x_{1}^{n})/n\right)}\leq 4D\left(x_{1}^{n}\right)\sqrt{\frac{\nu\log(n+1)}{n}},$$

where $D(x_1^n) := \sup_{f \in \mathscr{F}} \sqrt{\frac{\sum_{i=1}^n f^2(x_i)}{n}}$ is the ℓ_2 -radius of the set $\mathscr{F}(x_1^n) / \sqrt{n}$.

Simple case: Bounded functions

- A special simple case is when the function class is *b* uniformly bounded so that $D(x_1^n) \le b$ for all samples.
- Applying the lemma

$$\mathcal{R}_n(\mathscr{F}) \leq 2b\sqrt{rac{vlog(n+1)}{n}}$$
 for all $n \geq 1$

Combined with the Theorem, we conclude that any bounded function class with polynomial discrimination is Glivenko-Cantelli.

What types of function classes have polynomial discrimination? A good example is based on *indicator functions* of the *left-sided intervals* $(-\infty, t]$ (e.g., CDFs)

Corollary (Classical Glivenko-Cantelli)

Let $F(t) = \mathbb{P}[X \le t]$ be the CDF of a random variable X, and let \widehat{F}_n be the empirical CDF based on n *i.i.d.* samples $X_i \sim \mathbb{P}$. Then

$$\mathbb{P}\left[\left\|\widehat{F}_n-F\right\|_{\infty}\geq 8\sqrt{\frac{\log(n+1)}{n}}+\delta\right]\leq e^{-\frac{n\delta^2}{2}}\quad \text{for all }\delta\geq 0,$$

and hence $\left\|\widehat{F}_n - F\right\|_{\infty} \xrightarrow{a.s.} 0.$

- In this section, we briefly discuss a classical notion of complexity measure of function class, VC dimension.
- Let us consider a function class \mathscr{F} in which each function f is binary-valued, taking the values $\{0, 1\}$ for concreteness.
- In this case, the set $\mathscr{F}(x_1^n)$ can have at most 2^n elements.

Definition (Shattering and VC dimension)

Given a class \mathscr{F} of binary-valued functions, we say that the set $x_1^n = (x_1, \ldots, x_n)$ is shattered by \mathscr{F} if card $(\mathscr{F}(x_1^n)) = 2^n$. The VC dimension $v(\mathscr{F})$ is the largest integer n for which there is some collection $x_1^n = (x_1, \ldots, x_n)$ of n points that is shattered by \mathscr{F} .

- When the quantity $v(\mathscr{F})$ is finite, then the function class \mathscr{F} is said to be a VC class.
- Let's finish with an example.

- This example was taken from Ma (2022)
- Will show that VC dimension is an upper bound on the Rademacher complexity.
- The labels belong to the output space $\mathcal{Y} = \{-1, 1\}$, each classifier is a function $h : \mathcal{X} \to \mathbb{R}$ for all $h \in \mathcal{H}$, and the prediction is the sign of the output, i.e. $\hat{y} = \text{sgn}(h(x))$.
- We will look at zero-one loss function, i.e. $\ell_{0-1}((x,y),h) = 1(\text{sgn}(h(x)) \neq y)$. Note that we can re-express the loss function as

$$\ell_{0-1}((x,y),h) = \frac{1-\mathrm{sgn}(h(x))y}{2}.$$

VC dimension in supervised learning

- Think about the Rademacher complexity of ℓ_{0-1} loss function, i.e. considering the family of functions $\mathscr{F} = \{z = (x, y) \mapsto \ell_{0-1}((x, y), h) : h \in \mathcal{H}\}.$
- Define *Q* to be the set of all possible outputs on our dataset:
 - $Q = \left\{ \left(\operatorname{sgn} \left(h \left(x^{(1)} \right) \right), \dots, \operatorname{sgn} \left(h \left(x^{(n)} \right) \right) \right) \mid h \in \mathcal{H} \right\}.$

Computing the *Rademacher Complexity* we have

$$\mathcal{R}_{n}(\mathscr{F}) = \mathop{\mathbb{E}}_{\varepsilon_{1},...,\varepsilon_{n}} \left[\sup_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \frac{1 - \operatorname{sgn}(h(x^{(i)}))y_{i}}{2} \right]$$
$$= \frac{1}{2} \mathop{\mathbb{E}}_{\varepsilon_{1},...,\varepsilon_{n}} \left[\sup_{v \in Q} \frac{1}{n} \langle \varepsilon, v \rangle \right]$$

For any particular $v \in Q$, notice that $\langle \varepsilon, v \rangle$ is a sum of bounded random variables, so we can use *Hoeffding's inequality* to obtain

$$\Pr\left[\frac{1}{n}\langle\varepsilon, \mathbf{v}\rangle \geq t\right] \leq \exp\left(-nt^2/2\right)$$

VC dimension in supervised learning

Taking the union bound over $v \in Q$, we see that

$$\Pr\left[\exists v \in Q \text{ such that } \frac{1}{n} \langle \varepsilon, v \rangle \geq t\right] \leq |Q| \exp\left(-nt^2/2\right).$$

Thus, with probability at least $1 - \delta$, it is true that

$$\sup_{\boldsymbol{\nu}\in \boldsymbol{Q}}\frac{1}{n}\langle\boldsymbol{\nu},\varepsilon\rangle\leq \sqrt{\frac{2(\log|\boldsymbol{Q}|+\log(2/\delta))}{n}}$$

Similarly, we can show that $\mathbb{E}\left[\sup_{v \in Q} \frac{1}{n} \langle v, \varepsilon \rangle\right] \leq O\left(\sqrt{\frac{\log|Q| + \log(2/\delta)}{n}}\right)$ holds.

- *VC dimension* is one way to deal with bounding the size of *Q*.
- However, it has some limitations because will always end up with a bound that depends somehow on the dimension.

Thanks! marcelo.ortiz@emory.edu

တ် marcelortiz.com

У @marcelortizv

References

- Wainwright, M. J. (2019). *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge University Press.
- Ma, T. (2022). Lecture Notes for Machine Learning Theory (CS229M/STATS214).