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Introduction



Introduction

■ In the previous chapter we pointed out some limitations of asymptotic analysis
in high dimensions.

■ In this chapter, we will turn our focus to non-asymptotic analysis, where we
provide convergence guarantees without having the number of observations
n → ∞.

■ Our focus in this lecture is a set of results called the uniform law of large numbers.
■ These results represent a strengthening of the usual LLN, which applies to a

fixed sequence of RV, to related laws that hold uniformly over collections of RV.
■ Such uniform laws are of theoretical interest in Empirical Process Theory.
■ Moreover, they also play an important role in understanding the behavior of

different statistical estimators providing guarantees for bounds of the form:

Pr

[
sup
h∈H

|L̂(h)− L(h)| ≤ ϵ

]
≥ 1− δ.
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Some terminology from Empirical Process Theory

■ A stochastic process is a collection of random variables {X(t), t ∈ T} on the same
probability space, indexed by an arbitrary set T.

■ An empirical process is a stochastic process based on a random sample.
■ Consider a random sample X1, . . . , Xn of independent draws from a probability

measure P on an arbitrary sample X .
■ For a set A, we define the empirical measure (distribution) of A to be

Pn(A) =
1
n

n∑
i=1

δXi(A)

where δx(A) is the Dirac measure (or point mass) that assigns mass 1 if x ∈ A and
zero elsewhere

■ An Indicator function is closely related to a Dirac.
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Some terminology from Empirical Process Theory

■ Given some integrable function g, we may define the expectation functional γg
via

γg(P) =
∫

g(x)dP(x) = E[g(X)]

■ We can think about the previous expression as its an empirical integral

γg(Pn) =

∫
g(x)dPn(x) = En[g(X)]

■ For any class F of measurable functions f : X 7→ R, an empirical process{
γf(Pn), f ∈ F

}
can be defined.

■ Our goal is to show ”how close”
{
γf(Pn), f ∈ F

}
is to {γf(P), f ∈ F}.
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Uniform convergence of CDF

■ The law of any scalar random variable X can be fully specified by its cumulative
distribution function (CDF), whose value at any point t ∈ R is given by
F(t) := P(X ≤ t).

■ Suppose a collection {Xi}ni=1 of n i.i.d. samples, each drawn according to the law
specified by F.

■ A natural estimate of F is the empirical CDF given by

F̂n(t) :=
1
n

n∑
i=1

1(−∞,n] [Xi]

where 1(−∞,t)[x] is a {0,1}-valued indicator function for the event {x ≤ t}.
■ Since the population CDF can be written as F(t) = E

[
1(−∞,t)[X]

]
, the empirical CDF

is an unbiased estimate.
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Uniform convergence of CDF
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Glivenko-Cantelli

■ Given a pair of CDFs F and G, let us measure the distance between them using
the sup-norm

||G− F||∞ := supt∈R |G(t)− F(t)|
■ We can define then the continuity of a functional γ with respect to this norm.
■ More precisely, the functional γ is continuous at F in the sup-norm if, ∀ϵ > 0, there

exists a δ > 0 such that ||G− F||∞ ≤ δ implies that |γ(G)− γ(F)| ≤ ϵ

Theorem (Glivenko-Cantelli)
For any distribution, the empirical CDF F̂n is a strongly consistent estimator of the
population CDF in the uniform norm, meaning that

||F̂n − F||∞ a.s.−−−→ 0.

■ This notion is useful because, for any continuous functional, it reduces the
consistency question to the issue of whether or not that difference converges to
zero. 7



Uniform law for more general function classes

■ Let’s focus on a more general consideration of ULLN.
■ Let F be a class of integrable real-valued functions with domain X, and let {Xi}ni=1

be a collection of i.i.d. samples from some distribution P over X .
■ Consider the random variable

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f (Xi)− E[f(X)]

∣∣∣∣∣ ,
which measures the absolute deviation between the sample average 1

n
∑n

i=1 f (Xi)
and the population average E[f(X)], uniformly over the class F .

Theorem
We say that F is a Glivenko-Cantelli class for P if ‖Pn − P‖F converges to zero in
probability as n → ∞.

Note: Not all classes of functions are Glivenko-Cantelli.
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In what other statistical contexts do these quantities arise?

■ These quantities are one of the main focus of methods based on empirical risk
minimization.

■ Consider an indexed family of probability distributions {Pθ | θ ∈ Ω},
■ Suppose we have access to n samples {Xi}ni=1, each sample lying in some space X .
■ Those samples are drawn i.i.d. according to a distribution Pθ∗ , for some fixed but

unknown θ∗ ∈ Ω. Here the index θ∗ could lie within a finite-dimensional space, such
as Ω = Rd, or could lie within some function class Ω = G , in which case the
problem is nonparametric (i.e., infinite-dimensional space).

■ A standard decision-theoretic approach to estimating θ∗ is based on minimizing a
cost function of the form θ 7→ Lθ(X), which measures the ”fit” between a
parameter θ ∈ Ω and the sample X ∈ X .
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Empirical Risk Minimization

■ Given the collection of n samples {Xi}ni=1, the principle of empirical risk
minimization is based on the objective function (a.k.a. empirical risk)

R̂n (θ, θ
∗) :=

1
n

n∑
i=1

Lθ (Xi)

■ The empirical risk is contrasted with the population risk, where the expectation
Eθ∗ is taken over a sample X ∼ Pθ∗ ,

R (θ, θ∗) := Eθ∗ [Lθ(X)] ,
■ In practice, one minimizes the empirical risk over some subset Ω0 of the full

space Ω, thereby obtaining some estimate θ̂.
■ The question is how to bound the excess risk, measured in terms of the

population quantities - namely the difference

E(θ̂, θ∗) := R(θ̂, θ∗)− inf
θ∈Ω0

R (θ, θ∗) .
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How to bound the excess risk?

■ Our goal is to develop methods for controlling the excess risk.
■ Suppose there exists some θ0 ∈ Ω0 such that

R(θ0, θ∗) = inf
θ∈Ω0

R(θ, θ∗)

■ Then, the excess risk can be decomposed as

E(θ̂, θ∗) = {R(θ̂, θ∗)− R̂n(θ̂, θ
∗)}︸ ︷︷ ︸

T1

+ {R̂n(θ̂0, θ
∗)− R̂n(θ0, θ

∗)}︸ ︷︷ ︸
T2≤0

+ {R̂n(θ0, θ
∗)− R(θ0, θ∗)}︸ ︷︷ ︸

T3

■ T2 is non-positive, since θ̂ minimizes the empirical risk over Ω0.
■ Because θ0 is an unknown but non-random quantity, and recalling the definition

of empirical risk, T3 can be rewritten as

T3 =

[
1
n

n∑
i=1

Lθ0 (Xi)
]
− EX [Lθ0(X)]

corresponding to the deviation of a sample mean from its expectation for the
random variable Lθ0(X). 11



How to bound the excess risk?

■ T1 can be written in a similar way, namely as the difference

T1 = EX
[
Lθ̂(X)

]
−

[
1
n

n∑
i=1

Lθ̂ (Xi)
]
.

■ This quantity is more challenging to control, because the parameter θ̂ (in
contrast to θ0) is now random, and depends on the samples {Xi}ni=1.

■ Hence, controlling T1 requires a stronger result, such as a uniform law of large
numbers over the cost function class L (Ω0) := {x 7→ Lθ(x), θ ∈ Ω0}.

■ With this notation, we have

T1 ≤ sup
θ∈Ω0

∣∣∣∣∣1n
n∑

i=1
Lθ (Xi)− EX [Lθ(X)]

∣∣∣∣∣ = ‖Pn − P‖L(Ω0)

■ This same quantity also dominates T3, we conclude that the excess risk is at most

2 ‖Pn − P‖L(Ω0)
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A uniform law via
Rademacher Complexity



Uniform Law via Rademacher Complexity

■ Let me now turn to the technical details of deriving such results.
■ An important concept that underlies the study of uniform laws is the Rademacher

complexity of the function class F .
■ For any fixed collection xn1 := (x1, x2, · · · , xn) of points, consider the subset of Rn

given by
F (xn1) := {(f(x1), f(x2), · · · , f(xn)) | f ∈ F}

■ The set F (xn1) corresponds to all those vectors in Rn that can be realized by
applying a function f ∈ F to the collection (x1, x2, · · · , xn)and the empirical
Rademacher complexity is given by

R (F (xn1) /n) := Eε

[
sup
f∈F

∣∣∣∣∣1n
n∑

i=1
εif (xi)

∣∣∣∣∣
]
.

■ Given a collection Xn1 :=
{
Xi}ni=1 of random samples, then the empirical

Rademacher complexity R (F (Xn1) /n) is a random variable.
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Rademacher Complexity

■ Taking its expectation yields the Rademacher complexity of the function class F

we get

Rn(F ) := EX [R (F (Xn1) /n)] = EX,ε

[
sup
f∈F

∣∣∣∣∣1n
n∑

i=1
εif (Xi)

∣∣∣∣∣
]
.

■ Note that the Rademacher complexity is the average of the maximum correlation
between the vector (f (X1) , . . . , f (Xn)) and the ”noise vector” (ε1, . . . , εn), where the
maximum is taken over all functions f ∈ F .

■ Intuition: a function class is extremely large if we can always find a function that
has a high correlation with a randomly drawn noise vector. Conversely, when the
Rademacher complexity decays as a function of sample size, then it is impossible
to find a function that correlates very highly in expectation with a randomly
drawn noise vector.

■ Simple words: If the Rn(F ) is small, it suggests that the function class is not very
sensitive to random noise in the data. In other words, small Rn(F ) often implies
better generalization performance in a learning algorithm. 14



Rademacher complexity & Glivenko-Cantellii

■ There is a connection between Rademacher complexity and the Glivenko-Cantelli
theorem.

■ In particular, any bounded function class F , the condition Rn(F ) = o(1) implies
the Glivenko-Cantelli property.

Theorem
For any b-uniformly bounded class of functions F , any positive integer n ≥ 1 and any
scalar δ ≥ 0, we have

‖Pn − P‖F ≤ 2Rn(F ) + δ

with probability at least 1− exp
(
− nδ2

2b2
)
. Consequently, as long as Rn(F ) = o(1), we have

‖Pn − P‖F
a.s.−−−→ 0.

■ This is nothing more than a tail bound for the probability that the RV ‖Pn − P‖F

deviates substantially above a multiple of the Rademacher complexity.
■ Therefore, we need to obtain upper bounds on the Rn(F )
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Upper bounds on the
Rademacher complexity



Upper bounds on the Rademacher complexity

■ To make the previous theorem useful, we require methods for upper bounding
the Rademacher complexity.

■ There are several methods to do so, ranging from simple union bounds (suitable
for finite function classes) to more advanced techniques involvingmetric entropy
and chaining (I will skip this due to time constraints, sorry).

■ Instead, we gonna focus on more ”elementary” techniques that apply for
function classes with polynomial discrimination and Vapnik-Chervonenski classes.

16



Polynomial discrimination

■ It is relatively straightforward to establish uniform laws for function classes with
polynomial discrimination

■ Our interest in function classes for which the cardinality grows only as a
polynomial function of sample size.

Definition (Polynomial discrimination)
A class F of functions with domain X has polynomial discrimination of order v ≥ 1 if,
for each positive integer n and collection xn1 = {x1, . . . , xn} of n points in X , the set
F (xn1) has cardinality upper bounded

card (F (xn1)) ≤ (n+ 1)v
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Controlling Rademacher Complexity

■ Previous property provides a straightforward approach to controlling the
Rademacher complexity.

■ For any set S ⊂ Rn, we use D(S) := supx∈S ‖x‖2 to denote its maximal width in the
ℓ2-norm.

Lemma (Upper bound on Rademacher Complexity)
Suppose that F has polynomial discrimination of order v. Then for all positive integers n
and any collection of points xn1 = (x1, . . . , xn),

Eε

[
sup
f∈F

∣∣∣∣∣1n
n∑

i=1
εif (xi)

∣∣∣∣∣
]

︸ ︷︷ ︸
R(F(xn1)/n))

≤ 4D (xn1)
√

v log(n+ 1)
n ,

where D (xn1) := supf∈F

√∑n
i=1 f2(xi)

n is the ℓ2-radius of the set F (xn1) /
√
n.
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Simple case: Bounded functions

■ A special simple case is when the function class is b uniformly bounded so that D(xn1) ≤ b
for all samples.

■ Applying the lemma

Rn(F ) ≤ 2b
√

vlog(n+ 1)
n for all n ≥ 1

■ Combined with the Theorem, we conclude that any bounded function class with
polynomial discrimination is Glivenko-Cantelli.

■ What types of function classes have polynomial discrimination? A good example is based
on indicator functions of the left-sided intervals (−∞, t] (e.g., CDFs)

Corollary (Classical Glivenko-Cantelli)
Let F(t) = P[X ≤ t] be the CDF of a random variable X, and let F̂n be the empirical CDF based on n
i.i.d. samples Xi ∼ P. Then

P

[∥∥∥F̂n − F
∥∥∥
∞

≥ 8
√

log(n+ 1)
n + δ

]
≤ e−

nδ2
2 for all δ ≥ 0,

and hence
∥∥∥F̂n − F

∥∥∥
∞

a.s.−−→ 0.
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Vapnik-Chernonenkis dimension

■ In this section, we briefly discuss a classical notion of complexity measure of
function class, VC dimension.

■ Let us consider a function class F in which each function f is binary-valued,
taking the values {0,1} for concreteness.

■ In this case, the set F (xn1) can have at most 2n elements.

Definition (Shattering and VC dimension)
Given a class F of binary-valued functions, we say that the set xn1 = (x1, . . . , xn) is
shattered by F if card (F (xn1)) = 2n. The VC dimension v(F ) is the largest integer n
for which there is some collection xn1 = (x1, . . . , xn) of n points that is shattered by F .

■ When the quantity v(F ) is finite, then the function class F is said to be a VC class.
■ Let’s finish with an example.

20



VC dimension in supervised learning

■ This example was taken from Ma (2022)
■ Will show that VC dimension is an upper bound on the Rademacher complexity.
■ The labels belong to the output space Y = {−1,1}, each classifier is a function

h : X → R for all h ∈ H, and the prediction is the sign of the output, i.e.
ŷ = sgn(h(x)).

■ We will look at zero-one loss function, i.e. ℓ0−1((x, y),h) = 1(sgn(h(x)) 6= y). Note
that we can re-express the loss function as

ℓ0−1((x, y),h) =
1− sgn(h(x))y

2 .
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VC dimension in supervised learning

■ Think about the Rademacher complexity of ℓ0−1 loss function, i.e. considering
the family of functions F = {z = (x, y) 7→ ℓ0−1((x, y),h) : h ∈ H}.

■ Define Q to be the set of all possible outputs on our dataset:
Q =

{(
sgn

(
h
(
x(1)

))
, . . . , sgn

(
h
(
x(n)

)))
| h ∈ H

}
.

■ Computing the Rademacher Complexity we have

Rn(F ) = E
ε1,...,εn

[
sup
f∈F

1
n

n∑
i=1

εi
1− sgn(h(x(i)))yi

2

]

=
1
2 E
ε1,...,εn

[
sup
v∈Q

1
n 〈ε, v〉

]
■ For any particular v ∈ Q, notice that 〈ε, v〉 is a sum of bounded random variables,

so we can use Hoeffding’s inequality to obtain

Pr

[
1
n 〈ε, v〉 ≥ t

]
≤ exp

(
−nt2/2

)
22



VC dimension in supervised learning

■ Taking the union bound over v ∈ Q, we see that

Pr

[
∃v ∈ Q such that 1n 〈ε, v〉 ≥ t

]
≤ |Q| exp

(
−nt2/2

)
.

■ Thus, with probability at least 1− δ, it is true that

sup
v∈Q

1
n 〈v, ε〉 ≤

√
2(log |Q|+ log(2/δ))

n

■ Similarly, we can show that E
[
supv∈Q

1
n 〈v, ε〉

]
≤ O

(√
log |Q|+log(2/δ)

n

)
holds.

■ VC dimension is one way to deal with bounding the size of Q.
■ However, it has some limitations because will always end up with a bound that

depends somehow on the dimension.
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