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Sparse linear models in
high-dimensions



Introduction

■ The goal of this chapter is to provide an overview of the most popular used
shrinkage estimators in the machine learning literature and how are they useful in
the context of linear regressionq models from the perspective of econometrics
analysis.

■ Shrinkage estimators provide a feasible approach to potentially identify relevant
variables from a large pool of covariates.

■ So our fundamental problem is a linear model with a large parameter vector that
potentially contains many zeros (i.e., sparsity).

■ The main assumption is that, while the number of covariates is large, perhaps
much larger than the number of observations, the number of associated non-zero
coefficients is relatively small.

■ We can extend this framework even for nonparametric models (e.g., kernel ridge
regressions).

■ Applications: IVs from a many potentially weak instruments.
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Problem Formulation

■ Let θ∗ ∈ Rd be an unknown vector, referred to as the regression vector.
■ Suppose that we observe a vector y ∈ Rn and a matrix X ∈ Rn×d that are linked

via the standard linear model
y = Xθ∗ + w

where w ∈ Rn is a vector of noise variables.
■ This model can also be written in a scalarized form: for each index i = 1,2, . . . ,n,

we have yi = ⟨xi, θ∗⟩+ wi, where xTi ∈ Rd is the i-th row of X, and yi and wi are
(respectively) the i-th entries of the vectors y and w.

■ The quantity ⟨xi, θ∗⟩ := Σd
j=1, xijθ∗j denotes the usual Euclidean inner product

between the vector xi ∈ Rd of predictors (or covariates), and the regression
vector θ∗ ∈ Rd.

■ Thus, each response yi is a noisy version of a linear combination of d covariates.
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Different Sparsity Models

■ As we know when d > n it’s impossible to obtain any meaningful estimates of θ∗
unless we impose a low dimensional structure.

■ Key concept: Sparsity
■ Let us define the support set of θ∗ as

S (θ∗) :=
{
j ∈ {1,2, . . . ,d} | θ∗j ̸= 0

}
,

■ This set has cardinality s := |S (θ∗)| substantially smaller than d.
■ Assuming that the model is exactly supported on s coefficients may be overly

restrictive, in which case it is also useful to consider various relaxations of hard
sparsity, which leads to the notion of weak sparsity.

■ Roughly speaking, a vector θ∗ is weakly sparse if it can be closely approximated by
a sparse vector.
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ℓq-balls

■ There are different ways in which to formalize such an idea, one way being via
the ℓq− ”norms”.

■ For a parameter q and radius Rq > 0, consider the set

Bq
(
Rq
)
=

θ ∈ Rd |
d∑

j=1
|θj|q ≤ Rq

 .

■ It is known as the ℓq-ball of radius Rq.
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Shrinkage Estimators and Regularizers

■ The size of a parameter vector θ is the number of elements in the vector and the
length of θ is the length of the vector as measured by an assigned norm.

■ The ℓq norm of a vector θ = (θ1, . . . , θd)
′ denoted by the notation, ∥θ∥q, is defined

as

∥θ∥q

 d∑
j=1

|θi|q
1/q

q > 0,

where |θ| denotes the absolute value of θ.
■ When q = 2, the ℓq norm is known as the Euclidean Norm, or Euclidean Distance

Example

Let θ = (θ1, θ2), then the ℓ2 Euclidean norm of θ is ∥θ∥2 =

√
|θ1|2 + |θ2|2.
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Shrinkage Estimators and Regularizers

■ The idea of a shrinkage estimator is to impose a restriction on the length of the
estimated parameter vector θ̂.

■ In other words, the idea is to shrink the parameter vector in order to identify the
0 elements in θ.

■ This can be framed as the following optimization problem:

θ̂ = argmin
θ∈Θ

L(θ;y,X)

s.t. pen(θ) ≤ c,
where L(θ;y,X) is the loss function, and pen(θ) is a penalty term or regularizer for
any c > 0.

■ Different definitions of pen(θ) lead to different shrinkage estimators.
■ Let’s write the previous optimization problem in its Lagrange form

θ̂ = argmin
θ∈Θ

L(θ;y,X) + λpen(θ)
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ℓq norm, Bridge, LASSO, Ridge and Beyond

■ A interesting class of regularizers is called the Bridge estimator as defined by
Frank and Friedman (1993), which proposed the following regularizer in the
equation

pen(θ;q) = ∥θ∥qq =
d∑

j=1

∣∣θj∣∣q , q ∈ R+.

The Bridge estimator encompasses at least two shrinkage estimators as special
cases.

■ When q = 1, the Bridge estimator becomes the Least Absolute Shrinkage and
Selection Operator (LASSO) as proposed by Tibshirani (1996)

■ When q = 2, the Bridge estimator becomes the Ridge estimator as defined by
Hoerl and Kennard (1970b, 1970a).

■ We can define further a linear combination of LASSO and Ridge, which is called
Elastic Net:

pen(θ;α) =
d∑

j=1
α
∣∣θj∣∣+ (1− α)

∣∣θj∣∣2 8



Lasso, Ridge and Elastic Net
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Lasso, Ridge and Elastic Net

■ An advantage of the ℓ1 norm i.e., LASSO, is that it can produce estimates with
exactly zero values, i.e., elements in θ̂ can be exactly zero. This means we will
have corner solutions.

■ While the ℓ2 norm, i.e., Ridge, does not usually produce estimates with values
that equal exactly 0. Ridge contour does not have the sharp corners.

■ However, the Ridge does have a computational advantage over other variations of
the Bridge estimator. =⇒ Closed Form Solution

Proposition (Closed Form Solution of Ridge)
When q = 2 and L(θ;y,X) = (y− Xθ)⊤(y− Xθ) i.e., mean-square loss function, there is a
closed form solution, namely θ̂Ridge =

(
X⊤X+ λI

)−1 X⊤y

■ We can generalize this even for functions using Kernel Ridge Regressions and
RKHS learning theory in nonparametric estimation! (more on this in 2 chapters)

f∗ = argmin
f∈H

(
1
n

n∑
i=1

(yi − f (xi))2 + λ∥f∥2H

)
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The Regularization Bias



Lasso and Post-Lasso

■ Let’s focus in Lasso in this section.
■ Denote by L(θ) = n−1∑n

i=1
(
Yi − X⊤i θ

)2 the mean-square loss function.
■ The Lasso estimator is defined as:

θ̂ ∈ argmin
θ∈Rd

L(θ) + λ∥θ∥1.

■ The Lasso minimizes the sum of the empirical mean-square loss and a penalty or
regularization term λ∥θ∥1.

■ Notice that the solution to previous program is not necessarily unique.
■ λ sets the trade-off between fit and sparsity
■ Caution: In presence of a high-dimensional θ0 (true parameter) for which the

sparsity assumption is not assumed to hold, using the Lasso estimator is not a
good idea.
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Lasso and Post-Lasso

■ Lasso has a cousin called Post-Lasso.
■ This algorithm has been studied at Belloni and Chernozhukov (2011) and Belloni

and Chernozhukov (2013)
■ It is a two-step estimator in which a second step is added to the Lasso procedure

in order to remove the bias that comes from shrinkage.
■ That second step consists in running an OLS regression using only the covariates

associated with a non-zero coefficient in the Lasso step.
1. Run the Lasso regression and denote ŝ(θ) the estimator of the support set of θ, i.e.,

the non-zero Lasso coefficients.
2. Run an OLS regression including only the covariates corresponding to the non-zero

coefficients in ŝ(θ) from above.
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The Regularization Bias

■ A natural appeal of the Post-Lasso estimator is that it is a powerful tool for
variable selection.

■ However, we have to discuss the regularization bias which is nothing more than
an omitted variable bias arising from the same mechanism described previously.

Remark
Model selection and estimation cannot be achieved optimally at the same time.

■ Yang (2005) shows that for any model selection procedure to be consistent, it
must behave sub-optimally for estimating the regression function and vice-versa.
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The bias of simple plug-in estimators in linear models

Example (Linear model with high-dimensional controls)
Consider the iid sequence of random variables (Yi,Di, Xi)ni=1 such that:

Yi = Diθ0 + X⊤i β0 + εi,

with εi such that E[ε] = 0,E[ε]2 = σ2 <∞ and εi ⊥ (Di, Xi). θ0 capture the treatment
effect of a binary treatment Di ∈ {0,1}. Xi is of dimension d > 1. d is allowed to be
much larger than n and to grow with n. Denote by µd := E(X | D = d) for d ∈ {0,1}
and π0 := E[D].

■ In this example we are interested in estimate treatment effect θ0
■ So β0 is just a nuisance parameter.
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The bias of simple plug-in estimators in linear models

Two-step estimator:

1. Run a Lasso regression of Y on D and X, forcing D to remain in the model by
excluding θ0 from the penalty part in the Lasso. Exclude all the elements in X that
correspond to a zero coefficients β̂lasso

2. Run an OLS regression of Y on D and the set of selected X to obtain the
post-selection estimator θ̂post

■ Denote β̂ the corresponding estimator for β0 obtained in step 2. Notice that for
j ∈ {1, . . . ,d}, if β̂lassoj = 0 then β̂j = 0.

■ Also denote by π̂ := n−1∑n
i=1 Di. Therefore,

θ̂ :=

1
n
∑n

i=1 Di
(
Yi − X⊤i β̂

)
π̂

=
1
n1
∑
Di=1

(
Yi − X⊤i β̂

)
,

where nd :=
∑n

i=1 1 {Di = d} ,d ∈ {0,1}.
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Regularization Bias of θ̂

Lemma
Under the previous linear model, if µ1 ̸= 0, then

√
n
(
θ̂ − θ0

)
→ ∞

Sketch of the proof: Substitute the linear model in the expression of θ̂ to get

√
n
(
θ̂ − θ0

)
= π̂−1

[
1
n

n∑
i=1

DiXi

]⊤ √
n
(
β0 − β̂

)
+ π̂−1√n

[
1
n

n∑
i=1

Diεi

]
By CLT, CMT, LLN and Slutsky [

1
n

n∑
i=1

DiXi

]
p−→ π0µ1.

π̂−1

[
1√
n

n∑
i=1

Diεi

]
d−→ N

(
0, σ

2

π0

)
∣∣∣∣∣
[
1
n

n∑
i=1

DiXi

]′ √
n
(
β0 − β̂

)∣∣∣∣∣ ≈ s
√

log d → ∞
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Orthogonalization



Orthogonalization

■ This is the main idea in Chernozhukov et al. (2017); Belloni et al. (2017);
Chernozhukov et al. (2018).

■ To build the intuition, assume that the parameter of interest, θ0 solves the
equation Em (Zi, θ0, β0) = 0 for some known score function m(·), a vector of
observables Zi and nuisance parameter β0.

■ In the simplest case, think about the score function as the first derivative of the
log-likelihood functions in the parametric case.

■ From our example: Zi = (Yi,Di, Xi), andm (Zi, θ, β) :=
(
Yi − Diθ − X⊤i β

)
Di.

■ The derivative of the estimating moment with respect to nuisance parameter is
not zero:

E∂βm (Zi, θ0, β0) = −π0µ1 ̸= 0.

Idea: Can we replacem(·) by another score function ψ(·) and use a different nuisance
parameter η0 such that

E∂ηψ (Zi, θ0, η0) = 0
17



Neyman Orthogonality

■ We say that any function ψ that satisfies previous condition is an orthogonal score
or Neyman-Orthogonal

■ Intuition: The moment condition for estimating θ0 is not affected by small
perturbations around the true value of the nuisance parameter η0.

■ Changing the estimating moment can neutralize the effect of the first step
estimation and suppress the regularization bias.
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Asymptotic Normality of Orthogonal Estimator

Assumption (Orthogonal Moment Condition)
The (scalar) parameter of interest, θ0 is given by:

Eψ (Zi, θ0, η0) = 0

for some known real-valued function ψ(·) satisfying the orthogonality condition, a vector
of observables Zi and a high-dimensional sparse nuisance parameter η0 such that
∥η0∥0 ≤ s.

Assumption (High-Quality Nuisance Estimation)
Let first-step estimator η̂ such that with high-probability:

∥η̂∥0 ≲ s
∥η̂ − η0∥1 ≲

√
s2 log d/n

∥η̂ − η0∥2 ≲
√
s log d/n
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Asymptotic Normality of Orthogonal Estimator

Assumption (Affine-Quadratic Model)
The function ψ(·) is such that:

ψ (Zi, θ, η) = Γ1 (Zi, η) θ − Γ2 (Zi, η)

where Γj, j = 1, 2, are functions with all their second order derivatives with respect to η constant over
the convex parameter space of η.

The estimator we are going to consider is θ̌ such that:

1
n

n∑
i=1

ψ
(
Zi, θ̌, η̂

)
= 0.

Theorem (Asymptotic Normality)
The estimator θ̌ in the affine-quadratic model and under previous assumptions:
√
n
(
θ̌ − θ0

) d−→ N
(
0, σ2

Γ

)
, with σ2

Γ := E
[
ψ (Zi, τ0, η0)2

]
/E [Γ1 (Zi, η0)]2.
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Intuition comes from FWL Theorem

■ The Orthogonalization framework can be generalized for other ML learner
algorithms.

■ This is the main idea of Double Machine Learning (DML) (More on this in next
chapters)

■ DML builds on the FWL theorem to isolate the effect of interest, introducing a
key idea: the use of ML models in the orthogonalization process.
1. D̂ = f(X) + v

⇒ D̃ = D− X̂
2. Ŷ = g(X) + u

⇒ Ỹ = Y− Ŷ
3. Ỹ = θ0 + θ1X̃+ ε
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Double Lasso

■ We can define a Lasso procedure where Neyman-Orthogonality holds

The Double Lasso procedure:

1. We run Lasso regressions of Yi on Xi and Di on Xi

γ̂YX = argminγ∈Rp
∑

i
(
Yi − γ⊤Xi

)2
+ λ1

∑
j ψ̂

Y
j
∣∣γj∣∣ ,

γ̂DX = argminγ∈Rp
∑

i
(
Di − γ⊤Xi

)2
+ λ2

∑
j ψ̂

D
j
∣∣γj∣∣ ,

where ψ̂j are penalty loadings normally equal to 1. Then, we obtain the resulting
residuals:

Y̌i = Yi − γ̂⊤YXXi,
Ďi = Di − γ̂⊤DXXi.

In place of Lasso, we can use Post-Lasso or other Lasso relatives.
2. We run the least squares regression of Y̌i on Ďi to the estimator θ̌.
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Simulation Study

We compare the performance of the naive (e.g., Post-Lasso) and orthogonalmethods
(e.g., Double Lasso) in a computational experiment where d = n = 100,
βj = 1/j2, γj = 1/j2, and

Y = 1 · D+ β⊤X+ εY, X ∼ N(0, I), εY ∼ N(0,1)
D = γ⊤X+ D̃, D̃ ∼ N(0,1)/4

Here the true parameter is 1.
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Simulation Study
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Code

# Initialize constants
B = 1000 # Number of iterations
n = 100 # Sample size
d = 100 # Number of features

# Sim Parameters
mean = 0
sd = 1

# Initialize arrays to store results
naive = np.zeros(B)
orthogonal = np.zeros(B)
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Code

# Iterate through B simulations
for i in tqdm(range(B)):

# Generate parameters:
gamma = (1 / (np.arange(1, d + 1) ** 2)).reshape(d, 1)
beta = (1 / (np.arange(1, d + 1) ** 2)).reshape(d, 1)

# Generate covariates / random data
X = np.random.normal(mean, sd, n * d).reshape(n, d)
D = (X @ gamma) + np.random.normal(mean, sd, n).reshape(n, 1) / 4

# Generate Y using DGP
Y = D + (X @ beta) + np.random.normal(mean, sd, n).reshape(n, 1)

# Single selection method using rlasso
r_lasso_estimation = hdmpy.rlasso(np.concatenate((D, X), axis=1), Y, post=True)
coef_array = r_lasso_estimation.est['coefficients'].iloc[2:, :].to_numpy()
SX_IDs = np.where(coef_array != 0)[0]

# Check if any X coefficients are selected
if sum(SX_IDs) == 0:

# If no X coefficients are selected, regress Y on D only
naive[i] = sm.OLS(Y, sm.add_constant(D)).fit().params[1]

else:
# If X coefficients are selected, regress Y on selected X and D
X_D = np.concatenate((D, X[:, SX_IDs]), axis=1)
naive[i] = sm.OLS(Y, sm.add_constant(X_D)).fit().params[1]

# Double Lasso Partialling Out
resY = hdmpy.rlasso(X, Y, post=False).est['residuals']
resD = hdmpy.rlasso(X, D, post=False).est['residuals']
orthogonal[i] = sm.OLS(resY, sm.add_constant(resD)).fit().params[1] 26
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