Reproducing Kernel Hilbert Spaces and Kernel Methods

Marcelo Ortiz-Villavicencio

March 8, 2024 Econometrics Reading Group

Roadmap

1. Introduction

Motivating Example

2. Hilbert Space

Basics of Hilbert Spaces

3. Kernels and Operations

Sum and Product

Positive Definiteness

4. The reproducing kernel Hilbert space

5. Application: Kernel Ridge Regression with Continuous Treatments

Introduction

- Many problems in statistics like *nonparametric regression*, *density estimation*, *dimension reduction* and *testing* involve optimizing over function spaces.
- Why *Hilbert Spaces*? These include a broad function class and enjoy geometric properties similar to ordinary Euclidean space.
- We are going to focus on a particular class of function-based Hilbert Space which are defined by *reproducing kernels* (i.e., kernels with reproducing property).
- These spaces, known as *reproducing kernel Hilbert spaces* (**RKHS**), have attractive properties from both the computational and statistical points of view.
- **RKHS** provides a *mathematical framework* for understanding and leveraging the properties of *kernel methods*, allowing for flexible nonlinear modeling.
- My goal towards the end of this chapter is to present an application of these concepts in Causal Inference.

Motivating Example: Linear Classifiers

- Suppose that we want to separate (classify) the red points from the blue using a linear classifier.
- We have access to variables in two dimensions, $x \in \mathbb{R}^2$

Motivating Example: Linear Classifiers

■ It's not possible to separate the points in the original space ■ However if we map points to a *higher dimensional feature space* like $\phi(x) = \begin{bmatrix} x_1 & x_2 & x_1x_2 \end{bmatrix} \in \mathbb{R}^3$ it is possible to use a linear classifier.

- Of course there is nothing new in doing a classifier via transformation of features, right?
- What distinguished kernel methods is that they can use *infinetely many features*
- We can use it as long as our algorithms are defined in terms of *dot products* between features, where these dot products can be computed in *closed form*.
- The term kernel simply refers to a dot product between possible infinitely many features.
- Alternatively, kernel methods can be used to control *smoothness* of a function used in regression or classification and avoid overfitting/underfitting.

Hilbert Space

Hilbert Spaces are particular types of vector spaces, meaning that operations of addition and scalar multiplication are defined.

Definition (Inner Product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is said to be an inner product on \mathcal{H} if

- 1. $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$ for all $f_1, f_2, g \in \mathcal{H}$
- 2. $\langle f,g
 angle_{\mathcal{H}}=\langle g,f
 angle_{\mathcal{H}}$ for all $f,g\in\mathcal{H}$
- 3. $\langle f, f \rangle_{\mathcal{H}} \ge 0$ and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if f = 0 for all $f \in \mathcal{H}$.
- A vector space with an inner product is known as an *inner product space*
- We can define a *norm* using the inner product as $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$.

Definition (Cauchy Sequence)

A sequence $\{f_n\}_{n=1}^{\infty}$ of elements in a normed space \mathcal{H} is said to be a Cauchy sequence if for every $\epsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$, such that for all $n, m \ge N$, $\|f_n - f_m\|_{\mathcal{H}} < \epsilon$

Definition (Hilbert Space)

A Hilbert space \mathcal{H} is a space on which an inner product is defined and every Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in \mathcal{H} converges to some element $f^* \in \mathcal{H}$.

- A metric space in which every *Cauchy sequence* converges to an element *f*^{*} of the space is known as *complete*
- In summary, a Hilbert space is a *complete inner product space*.

Riesz Representation Theorem

- The notion of a *linear functional* plays an important role in characterizing **RKHS**.
- A linear functional on a Hilbert space \mathcal{H} is a mapping $L : \mathcal{H} \to \mathbb{R}$ that is linear, meaning that $L(f + \alpha g) = L(f) + \alpha L(g)$ for all $f, g \in \mathcal{H}$ and $\alpha \in \mathbb{R}$.
- A linear functional is said to be *bounded* if there exists some $M < \infty$ such that $|L(f)| \le M ||f||_{\mathcal{H}}$ for all $f \in \mathcal{H}$.
- Given any $g \in \mathcal{H}$, the mapping $f \mapsto \langle f, g
 angle_{\mathcal{H}}$ defines a linear functional.
- It is bounded, since by the Cauchy-Schwarz inequality we have $|\langle f, g \rangle_{\mathcal{H}}| \leq M ||f||_{\mathcal{H}}$ for all $f \in \mathcal{H}$, where $M := ||g||_{\mathcal{H}}$.
- The *Riesz representation theorem* guarantees that every bounded linear functional arises in exactly this way.

Theorem (Riesz Representation Theorem)

Let *L* be a bounded linear functional on a Hilbert Space. Then there exists a unique $g \in \mathcal{H}$ such that $L(f) = \langle f, g \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$. We refer to g as the representer of the functional *L*.

Kernels and Operations

Definition (Kernel)

Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** if there exists an \mathbb{R} -Hilbert space and a map $\phi : \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$

$$k(\mathbf{x},\mathbf{x}') := \langle \phi(\mathbf{x}), \phi(\mathbf{x}')
angle_{\mathcal{H}}$$

- We generally don't require any conditions on \mathcal{X}
- A single kernel can correspond to several possible features. A trivial example for $\mathcal{X} := \mathbb{R}$:

$$\phi_1(x) = x$$
 and $\phi_2(x) = \begin{bmatrix} x/\sqrt{2} \\ x/\sqrt{2} \end{bmatrix}$

 $\langle \phi_1(\mathbf{x}), \phi_1(\mathbf{x}) \rangle = \langle \phi_2(\mathbf{x}), \phi_2(\mathbf{x}) \rangle = \mathbf{x}^2$

Theorem (Sum of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

Theorem (Product of kernels are kernels)

Given k_1 on \mathcal{X}_1 and k_2 on \mathcal{X}_2 , then $k_1 \times k_2$ is a kernel on $\mathcal{X}_1 \times \mathcal{X}_2$. If $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$, then $k := k_1 \times k_2$ is a kernel on \mathcal{X} .

Sketch of the proof: Let us define two spaces $\mathcal{H}_1, \mathcal{H}_2$. \mathcal{H}_1 is the space of kernels between shapes with the following map,

$$\phi_1(x) = \begin{bmatrix} \mathbb{I}_{\square} \\ \mathbb{I}_{\triangle} \end{bmatrix} \quad \phi_1(\square) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad k_1(\square, \triangle) = \langle \phi_1(\square), \phi_1(\triangle) \rangle = 0.$$

 \mathcal{H}_2 is the space of kernels between colors with the following map,

$$\phi_2(x) = \begin{bmatrix} \mathbb{I}_{\bullet} \\ \mathbb{I}_{\bullet} \end{bmatrix} \quad \phi_2(\bullet) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad k_2(\bullet, \bullet) = \langle \phi_2(\bullet), \phi_2(\bullet) \rangle = 1$$

Sketch of the proof: Let's define a feature space for colors and shapes

$$\Phi(\mathbf{x}) = \begin{bmatrix} \mathbb{I}_{\Box} & \mathbb{I}_{\Delta} \\ \mathbb{I}_{\Box} & \mathbb{I}_{\Delta} \end{bmatrix} = \begin{bmatrix} \mathbb{I}_{\bullet} \\ \mathbb{I}_{\bullet} \end{bmatrix} \begin{bmatrix} \mathbb{I}_{\Box} & \mathbb{I}_{\Delta} \end{bmatrix} = \phi_2(\mathbf{x})\phi_1^{\top}(\mathbf{x})$$

Since inner product between 2 matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$ is $\langle A, B \rangle = tr(A^{\top}B)$, then the Kernel is:

$$k(x,x') = \sum_{i \in \{\bullet,\bullet\}} \sum_{j \in \{\Box, \bigtriangleup\}} \Phi_{ij}(x) \Phi_{ij}(x') = \operatorname{tr}(\phi_1(x) \underbrace{\phi_2^{\top}(x)\phi_2(x')}_{k_2(x,x')} \phi_1^{\top}(x'))$$

=
$$\operatorname{tr}(\underbrace{\phi_1^{\top}(x')\phi_1(x)}_{k_1(x,x')}) k_2(x,x') = k_1(x,x') k_2(x,x')$$

In simple words, the product of k₁k₂ defines a valid inner product.
 The sum and product rules allow us to define a wide variety of kernels.

Lemma (Polynomial kernels)

Let $x, x' \in \mathbb{R}^d$ for $d \ge 1$, and let $m \ge 1$ be an integer and $c \ge 0$ be a positive real. Then

 $k(\mathbf{x},\mathbf{x}'):=\left(\langle \mathbf{x},\mathbf{x}'\rangle+\mathbf{c}\right)^{m}$

is a valid kernel.

We can also extend this combination of sum and product rules to sums with infinitely many terms.

Definition (*p***-summable sequences)**

The space ℓ_p of the *p*-summable sequences is defined as all sequences $(a_i)_{i \ge 1}$ for which

$$\sum_{i=1}^{\infty} a_i^p < \infty.$$

• Kernels can be defined in terms of sequences in ℓ_2 .

Lemma

Given a non-empty set \mathcal{X} , and a sequence of functions $(\phi_i(x))_{i\geq 1}$ in ℓ_2 where $\phi_i : \mathcal{X} \to \mathbb{R}$ is the ith coordinate of the feature map $\phi(x)$. Then

$$k(\mathbf{x},\mathbf{x}') := \sum_{i=1}^{\infty} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

is a well-defined kernel in \mathcal{X} .

So I can write a kernel even if I have infinitely many features.

Infinitely many features and Taylor Series

Taylor series expansions can be used to define kernels that have *infinitely many features*.

Definition (Taylor series kernel)

Assume we can define the Taylor series $f(z) = \sum_{n=0}^{\infty} a_n z^n \quad |z| < r, z \in \mathbb{R}$, for $r \in (0, \infty]$, with $a_n \ge 0$ for all $n \ge 0$. Define \mathcal{X} to be the \sqrt{r} -ball in \mathbb{R}^d . Then for $x, x' \in \mathbb{R}^d$ such that $||x|| < \sqrt{r}$, we have the kernel

$$k(x,x') = f(\langle x,x'\rangle) = \sum_{n=0}^{\infty} a_n \langle x,x'\rangle^n$$

Example (Exponential Kernel)

The exponential kernel on \mathbb{R}^d is defined as

$$k(x, x') := \exp(\langle x, x' \rangle)$$

Example (Exponentiated quadratic kernel)

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right) = \sum_{\ell=1}^{\infty} \underbrace{\left(\sqrt{\lambda_\ell} \boldsymbol{e}_\ell(x)\right)}_{\phi_\ell(x)} \underbrace{\left(\sqrt{\lambda_\ell} \boldsymbol{e}_\ell(x')\right)}_{\phi_\ell(x')}$$
$$\lambda_\ell \boldsymbol{e}_\ell(x) = \int k(x, x') \, \boldsymbol{e}_\ell(x') \, \boldsymbol{p}(x') \, dx'$$
$$\boldsymbol{p}(x) = \mathcal{N}\left(0, \sigma^2\right)$$

where

$$\lambda_{\ell} \propto b^{\ell} \quad b < 1$$

 $e_{\ell}(x) \propto \exp\left(-(c-a)x^{2}\right)H_{\ell}(x\sqrt{2c})$

a, b, c are functions of σ , and H_{ℓ} is ℓ -th order Hermite polynomial (i.e., orthogonal polynomial sequence).

Given a function of two arguments, k(x, x'), how can we determine if it is a valid kernel?

- 1. Find a feature map?
 - Sometimes this is not obvious (e.g. if the feature vector is *infinite-dimensional*, e.g. the exponentiated quadratic kernel in the last slide)
 - ▶ The feature map is *not unique*.
- 2. A direct property of the function: positive definiteness.

- All kernel functions are **positive definite**
- In fact, if we have a *positive definite* function, we know there exist one (or more) feature spaces for which the kernel defines the inner product.
- We are not obliged to define the feature spaces explicitly!

Definition (Positive definite functions)

A symmetric function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if

 $\forall n \geq 1, \forall (a_1, \ldots a_n) \in \mathbb{R}^n, \forall (x_1, \ldots, x_n) \in \mathcal{X}^n$,

 $\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}k\left(x_{i},x_{j}\right)\geq0$

The function $k(\cdot, \cdot)$ is strictly positive definite if, for mutually distinct x_i , the equality holds only when all the a_i are zero.

Theorem

Let \mathcal{H} be any Hilbert space (not necessarily an **RKHS**), \mathcal{X} a non-empty set, and $\phi : \mathcal{X} \to \mathcal{H}$. Then $k(x,y) := \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$ is a positive definite function.

Proof:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}k(x_{i}, x_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_{i}\phi(x_{i}), a_{j}\phi(x_{j}) \rangle_{\mathcal{H}}$$
$$= \left\langle \sum_{i=1}^{n} a_{i}\phi(x_{i}), \sum_{j=1}^{n} a_{j}\phi(x_{j}) \right\rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} a_{i}\phi(x_{i}) \right\|_{\mathcal{H}}^{2} \ge 0$$

The reproducing kernel Hilbert space

- So far, I have introduced some notation and properties on feature spaces and kernels.
- We conclude that these kernels are positive definite.
- In this section, we use these kernels to define functions on \mathcal{X} .

In this section, we claim how any *positive definite* kernel function *k* defined in the Cartesian product space $\mathcal{X} \times \mathcal{X}$ can be used to construct a particular Hilbert *space of functions* on \mathcal{X} .

This Hilbert space is *unique*, and has the following property

Lemma (Kernel Trick)

 $\forall x \in \mathcal{X}, \forall f(\cdot) \in \mathcal{H},$

$$\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$$

Let us see an example!

Finite space, polynomial features

From our motivating example we define a mapping $\phi : \mathbb{R}^2 \to \mathbb{R}^3$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mapsto \quad \phi(x) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$$

with kernel

$$k(x,y) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}^\top \begin{bmatrix} y_1 \\ y_2 \\ y_1y_2 \end{bmatrix}$$

Let's now define a function of the features x_1, x_2 and x_1x_2 of x, namely:

$$f(x) = ax_1 + bx_2 + cx_1x_2$$

• The function *f* belongs to a *space of functions* mappings from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} .

Finite space, polynomial features

Defining an equivalent representation for *f*, we can define

$$f(\cdot) = \left[\begin{array}{c} a \\ b \\ c \end{array}\right]$$

People sometimes write *f* rather than $f(\cdot)$. The notation $f(x) \in \mathbb{R}$ refers to the function evaluated at a particular point.

Then, we can write

$$egin{aligned} f(x) &= f(\cdot)^{ op} \phi(x) \ & \coloneqq \langle f(\cdot), \phi(x)
angle_{\mathcal{F}} \end{aligned}$$

Meaning that the evaluation of f at x can be written as an *inner product in feature* space and \mathcal{H} is a space of functions mapping from \mathbb{R}^2 to \mathbb{R}

Functions of infinitely many features

• We can write a function of infinitely many features with an *exponentiated quadratic kernel*.

$$f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x)$$

where the expression is *bounded* in absolute value as long as $\sum_{\ell=1}^{\infty} f_{\ell}^2 < \infty$

$$f(x) = \sum_{\ell=1}^{\infty} \underbrace{\left(\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}(x_{i})\right)}_{f_{\ell}} \phi_{\ell}(x)$$
$$= \left\langle \sum_{i=1}^{m} \alpha_{i} \phi(x_{i}), \phi(x) \right\rangle_{\mathcal{H}}$$
$$= \sum_{i=1}^{m} \alpha_{i} k(x_{i}, x)$$

Nice! We got a function of *infinitely many features* expressed using *m coefficients* 23

Theorem

Given any positive definite kernel function k, there is a unique Hilbert space \mathcal{H} in which the kernel satisfies reproducing property. It is known as the reproducing kernel Hilbert space associated with k.

So there are 2 defining features of an **RKHS**:

1. The feature map of every point is a function: $k(\cdot, x) = \phi(x) \in \mathcal{H}$ for any $x \in \mathcal{X}$, and

$$k(\mathbf{x},\mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_{\mathcal{H}} = \langle k(\cdot, \mathbf{x}), k(\cdot, \mathbf{y}) \rangle_{\mathcal{H}}.$$

2. The *reproducing property* : $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$

Lemma (Tensor Products)

Suppose that \mathcal{H}_1 and \mathcal{H}_2 are reproducing kernel Hilbert spaces of real-valued functions with domains \mathcal{X}_1 and \mathcal{X}_2 , and equipped with kernels \mathcal{K}_1 and \mathcal{K}_2 , respectively. Then the tensor product space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is an **RKHS** of real-valued functions with domain $X_1 \times \mathcal{X}_2$, and with kernel function

 $\mathcal{K}((x_1, x_2), (x'_1, x'_2)) = \mathcal{K}_1(x_1, x'_1) \mathcal{K}_2(x_2, x'_2).$

Fitting via kernel ridge regression

- The **RKHS** is a practical hypothesis space for *nonparametric regression*.
- Consider the output $Y \in \mathbb{R}$ and the input $W \in \mathcal{W}$.
- Our goal is to estimate the *conditional expectation function* $\gamma_0(w) = \mathbb{E}[Y | W = w]$

Definition

A *kernel ridge regression* estimator of γ_0 is

$$\hat{\gamma} = \underset{\gamma \in \mathcal{H}}{\arg\min} \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_{i} - \langle \gamma, \phi(W_{i}) \rangle_{\mathcal{H}} \right\}^{2} + \lambda \|\gamma\|_{\mathcal{H}}^{2},$$

where $\lambda > 0$ is a hyperparameter on the ridge penalty $\|\gamma\|_{\mathcal{H}}^2$, which imposes *smoothness* in estimation.

■ The feature map takes a value in the original space $w \in W$ and maps it to a feature in the **RKHS** $\phi(w) \in H$.

The solution to the optimization problem has a well-known closed form (Kimeldorf & Wahba, 1971), given by :

$$\hat{\gamma}(w) = Y^{\top} \left(\mathcal{K}_{WW} + n\lambda I \right)^{-1} \mathcal{K}_{Ww}.$$

- The closed-form solution involves the *kernel matrix* $\mathcal{K}_{WW} \in \mathbb{R}^{n \times n}$ with (i, j) -th entry $\mathcal{K}(W_i, W_j)$ and the *kernel vector* $\mathcal{K}_{WW} \in \mathbb{R}^n$ with *i* th entry $\mathcal{K}(W_i, w)$.
- To tune the ridge hyperparameter λ, both generalized cross-validation and leave-one-out cross-validation have closed-form solutions, and the former is asymptotically optimal (Craven & Wahba, 1978; Li, 1986).

from sklearn.kernel_ridge import KernelRidge

```
# Generate synthetic data
X_train = np.sort(5 * np.random.rand(40, 1), axis=0)
y_train = np.sin(X_train).ravel()
# Add noise to every fifth data point
y_train[::5] += 3 * (0.5 - np.random.rand(8))
X_test = np.linspace(0, 5, 100)[:, np.newaxis]
```

```
# Fit Kernel Ridge Regression model
alpha = 1e-5 # Regularization parameter
kernel = 'rbf' # Gaussian Radial Basis Function (RBF) kernel
gamma = 0.1 # Kernel coefficient for RBF kernel
```

```
kr = KernelRidge(alpha=alpha, kernel=kernel, gamma=gamma)
kr.fit(X_train, y_train)
```

```
# Predict
y_pred = kr.predict(X_test)
```

How to fit a KRR in python?

Application: Kernel Ridge Regression with Continuous Treatments

- Singh et al. (2023) use **RKHS** and the Riesz representer theorem to propose a nonparametric estimator for *dose response curves* and other causal parameters that are inner products of kernel ridge regression.
- Treatments and covariates may be *discrete* or *continuous*
- The estimator has a closed-form solution due to the use of kernel trick specific to RKHS.
- Empirical Application: Using the Job Corps training experiment, they showed that different *intensities* of *job training* (e.g., hours of training) have smooth effects on counterfactual employment.

- Let the treatment be a *continuous treatment* D and some covariates $X \in \mathcal{X}$.
- The *dose response*, a generalization of ATE, is given by $\theta_0^{ATE}(d) = E\{Y^{(d)}\}$, which is the counterfactual mean outcome given the intervention D = d for the entire population *P*.
- Under the selection on observables assumptions, we can identify the causal function of interest as an integral of the regression function γ_0 such that

$$heta_0^{ATE}(d) = \int \gamma_0(d, x) \mathrm{d}P(x)$$

where $\gamma_0(d, x) = E(Y | D = d, X = x)$

- Estimation of nonparametric causal functions such as θ_0^{ATE} are *computationally demanding*.
- The *reproducing kernel Hilbert space* **RKSH** \mathcal{H} solves the technical issues when estimating causal functions with a *continuous treatment*.

Riesz representation

- With continuous treatment, fix the values *d* and define the *linear functional* $F : \gamma_0 \mapsto \int \gamma_0(d, x) dP(x)$ so that the dose response curve evaluated at *d* is $\theta_0(d) = F(\gamma_0)$.
- By the *Riesz representation theorem*, since *F* is a *bounded linear functional* over a Hilbert space, it admits an inner product representation within that Hilbert space: there exists some $\tilde{\alpha}_0 \in \mathcal{H}$ such that $F(\gamma) = \langle \gamma, \tilde{\alpha}_0 \rangle_{\mathcal{H}}$ for all $\gamma \in \mathcal{H}$.
- In particular, $\theta_0(d) = \langle \gamma_0, \tilde{\alpha}_0 \rangle_{\mathcal{H}}$.
- The Riesz representation separates the steps of nonparametric causal estimation in the **RKHS** into three simple steps:
 - 1. Estimate the regression γ_0
 - 2. Estimate $\tilde{\alpha}_0$, which embeds P(x)
 - 3. Computer their inner product.
 - Based on this argument, they propose nonparametric estimators that are *inner products* of *kernel ridge regressions*, which therefore have *closed-form solutions*.

Decoupled representation and closed-form solution

- Let $k_{\mathcal{D}}$: $\mathcal{D} \times \mathcal{D} \to \mathbb{R}$ and $k_{\mathcal{X}}$: $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be measurable *positive definite kernels* corresponding to scalar-valued **RKHS**s $\mathcal{H}_{\mathcal{D}}$ and $\mathcal{H}_{\mathcal{X}}$.
- Define the *feature maps* $\phi_{\mathcal{D}} : \mathcal{D} \to \mathcal{H}_{\mathcal{D}}, d \mapsto k_{\mathcal{D}}(d, \cdot); \phi_{\mathcal{X}} : \mathcal{X} \to \mathcal{H}_{\mathcal{X}}, x \mapsto k_{\mathcal{X}}(x, \cdot).$
- We assume that regression γ_0 is an element of **RKHS** \mathcal{H} with *kernel* $k((d, x); (d', x')) = k_{\mathcal{D}}(d, d') k_{\mathcal{X}}(x, x').$
- Under **RKHS** regularity conditions, $\theta_0^{ATE}(d) = \langle \gamma_0, \phi(d) \otimes \mu_x \rangle_{\mathcal{H}}$, where $\mu_x = \int \phi(x) dP(x)$;

Lemma (Estimation)

Denote by $K_{DD}, K_{XX} \in \mathbb{R}^{n \times n}$ the empirical kernel matrices calculated from observations drawn from population P. Denote by \odot the elementwise product. The causal function estimator has closed-form solution

$$\hat{\theta}^{\text{ATE}}(d) = n^{-1} \sum_{i=1}^{n} Y^{\top} \left(K_{DD} \odot K_{XX} + n \lambda I \right)^{-1} \left(K_{Dd} \odot K_{XX_i} \right)$$

US Job Corps

- This paper estimates the dose response function of the *Job Corps*, the largest job training program for disadvantaged youth in the United States.
- Although access to the program was randomized, the participants could decide whether to participate and how many hours.
- The continuous treatment $D \in \mathbb{R}$ is the *total hours* spent in academic or vocational classes in the first year after randomization, and the continuous outcome $Y \in \mathbb{R}$ is the *proportion of weeks* employed in the second year after randomization.
- The covariates $X \in \mathbb{R}^{40}$ include age, gender, ethnicity, language competency, education, marital status, household size, household income, previous receipt of social aid, family background, health and health-related behavior at the base line.
- The dose response curve plateaus and reaches its maximum around d = 500, corresponding to 12.5 weeks of classes.

Results

Thanks! marcelo.ortiz@emory.edu

တ္ marcelortiz.com

У @marcelortizv

References

- Wainwright, M. J. (2019). *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge University Press.
- Gretton, A. (2019). Introduction to RKHS, and some simple kernel algorithms.
- Singh, R., Xu, L., & Gretton, A. (2024). Kernel methods for causal functions: Dose, heterogeneous and incremental response curves. Biometrika, 111(2), 497–516. https://doi.org/10.1093/biomet/asad042