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Introduction



Introduction

■ Many problems in statistics like nonparametric regression, density estimation,
dimension reduction and testing involve optimizing over function spaces.

■ Why Hilbert Spaces? These include a broad function class and enjoy geometric
properties similar to ordinary Euclidean space.

■ We are going to focus on a particular class of function-based Hilbert Space which
are defined by reproducing kernels (i.e., kernels with reproducing property).

■ These spaces, known as reproducing kernel Hilbert spaces (RKHS), have attractive
properties from both the computational and statistical points of view.

■ RKHS provides a mathematical framework for understanding and leveraging the
properties of kernel methods, allowing for flexible nonlinear modeling.

■ My goal towards the end of this chapter is to present an application of these
concepts in Causal Inference.
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Motivating Example: Linear Classifiers

■ Suppose that we want to separate (classify) the red points from the blue using a
linear classifier.

■ We have access to variables in two dimensions, x ∈ R2
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Motivating Example: Linear Classifiers

■ It’s not possible to separate the points in the original space
■ However if we map points to a higher dimensional feature space like

ϕ(x) =
[
x1 x2 x1x2

]
∈ R3 it is possible to use a linear classifier.
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Motivating Example: Linear Classifiers

■ Of course there is nothing new in doing a classifier via transformation of
features, right?

■ What distinguished kernel methods is that they can use infinetely many features
■ We can use it as long as our algorithms are defined in terms of dot products

between features, where these dot products can be computed in closed form.
■ The term kernel simply refers to a dot product between possible infinitely many

features.
■ Alternatively, kernel methods can be used to control smoothness of a function

used in regression or classification and avoid overfitting/underfitting.
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Basics of Hilbert Spaces

■ Hilbert Spaces are particular types of vector spaces, meaning that operations of
addition and scalar multiplication are defined.

Definition (Inner Product)
Let H be a vector space over R. A function 〈·, ·〉H : H×H → R is said to be an inner
product on H if
1. ⟨α1f1 + α2f2,g⟩H = α1 ⟨f1,g⟩H + α2 ⟨f2,g⟩H for all f1, f2,g ∈ H

2. ⟨f,g⟩H = ⟨g, f⟩H for all f,g ∈ H

3. ⟨f, f⟩H ≥ 0 and ⟨f, f⟩H = 0 if and only if f = 0 for all f ∈ H.

■ A vector space with an inner product is known as an inner product space
■ We can define a norm using the inner product as ‖f‖H :=

√
〈f, f〉H.
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Basics of Hilbert Spaces

Definition (Cauchy Sequence)
A sequence {fn}∞n=1 of elements in a normed space H is said to be a Cauchy sequence
if for every ϵ > 0, there exists N = N(ε) ∈ N, such that for all n,m ≥ N, ‖fn − fm‖H < ϵ

Definition (Hilbert Space)
A Hilbert space H is a space on which an inner product is defined and every Cauchy
sequence {fn}∞n=1 in H converges to some element f∗ ∈ H.

■ A metric space in which every Cauchy sequence converges to an element f∗ of the
space is known as complete

■ In summary, a Hilbert space is a complete inner product space.
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Riesz Representation Theorem

■ The notion of a linear functional plays an important role in characterizing RKHS.
■ A linear functional on a Hilbert space H is a mapping L : H → R that is linear,

meaning that L(f+ αg) = L(f) + αL(g) for all f,g ∈ H and α ∈ R.
■ A linear functional is said to be bounded if there exists some M < ∞ such that

|L(f)| ≤ M‖f‖H for all f ∈ H.
■ Given any g ∈ H, the mapping f 7→ 〈f,g〉H defines a linear functional.
■ It is bounded, since by the Cauchy-Schwarz inequality we have |〈f,g〉H| ≤ M‖f‖H

for all f ∈ H, where M := ‖g‖H.
■ The Riesz representation theorem guarantees that every bounded linear functional

arises in exactly this way.

Theorem (Riesz Representation Theorem)
Let L be a bounded linear functional on a Hilbert Space. Then there exists a unique g ∈ H
such that L(f) = 〈f,g〉H for all f ∈ H. We refer to g as the representer of the functional L.
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Kernels and Operations

Definition (Kernel)
Let X be a non-empty set. A function k : X × X → R is called a kernel if there exists
an R-Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X

k (x, x′) := 〈ϕ(x), ϕ (x′)〉H .

■ We generally don’t require any conditions on X
■ A single kernel can correspond to several possible features. A trivial example for

X := R :

ϕ1(x) = x and ϕ2(x) =
[

x/
√
2

x/
√
2

]
〈ϕ1(x), ϕ1(x)〉 = 〈ϕ2(x), ϕ2(x)〉 = x2

9



Sum and Products

Theorem (Sum of kernels are kernels)
Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels on X .

Theorem (Product of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2. If X1 = X2 = X , then
k := k1 × k2 is a kernel on X .

Sketch of the proof: Let us define two spaces H1,H2. H1 is the space of kernels
between shapes with the following map,

ϕ1(x) =
[

I□
I△

]
ϕ1(□) =

[
1
0

]
, k1(□,4) = 〈ϕ1(□), ϕ1(4)〉 = 0.

H2 is the space of kernels between colors with the following map,

ϕ2(x) =
[

I•
I•

]
ϕ2(•) =

[
0
1

]
k2(•, •) = 〈ϕ2(•), ϕ2(•)〉 = 1
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Sum and Products

Sketch of the proof: Let’s define a feature space for colors and shapes

Φ(x) =
[

I□ I△
I□ I△

]
=

[
I•
I•

] [
I□ I△

]
= ϕ2(x)ϕ⊤

1 (x)

Since inner product between 2 matrices A ∈ Rmxn and B ∈ Rmxn is 〈A,B〉 = tr(A⊤B),
then the Kernel is:

k (x, x′) =
∑

i∈{•,•}

∑
j∈{□,△}

Φij(x)Φij (x′) = tr(ϕ1(x)ϕ⊤
2 (x)ϕ2 (x′)︸ ︷︷ ︸

k2(x,x′)

ϕ⊤
1 (x′))

= tr(ϕ⊤
1 (x′)ϕ1(x)︸ ︷︷ ︸

k1(x,x′)

)k2 (x, x′) = k1 (x, x′) k2 (x, x′)

■ In simple words, the product of k1k2 defines a valid inner product.
■ The sum and product rules allow us to define a wide variety of kernels.
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Sum & Product =⇒ Polynomials

Lemma (Polynomial kernels)
Let x, x′ ∈ Rd for d ≥ 1, and let m ≥ 1 be an integer and c ≥ 0 be a positive real. Then

k (x, x′) := (〈x, x′〉+ c)m

is a valid kernel.

■ We can also extend this combination of sum and product rules to sums with
infinitely many terms.

Definition (p-summable sequences)
The space ℓp of the p-summable sequences is defined as all sequences (ai)i≥1 for
which

∞∑
i=1

ap
i < ∞.
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p-summable sequences and kernels

■ Kernels can be defined in terms of sequences in ℓ2.

Lemma
Given a non-empty set X , and a sequence of functions (ϕi(x))i≥1 in ℓ2 where ϕi : X → R is
the ith coordinate of the feature map ϕ(x). Then

k (x, x′) :=
∞∑
i=1

ϕi(x)ϕi (x′)

is a well-defined kernel in X .

■ So I can write a kernel even if I have infinitely many features.
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Infinitely many features and Taylor Series

■ Taylor series expansions can be used to define kernels that have infinitely many
features.

Definition (Taylor series kernel)
Assume we can define the Taylor series f(z) =

∑∞
n=0 anzn |z| < r, z ∈ R, for r ∈ (0,∞],

with an ≥ 0 for all n ≥ 0. Define X to be the
√
r-ball in Rd. Then for x, x′ ∈ Rd such that

‖x‖ <
√
r, we have the kernel

k (x, x′) = f (〈x, x′〉) =
∞∑
n=0

an 〈x, x′〉n

Example (Exponential Kernel)
The exponential kernel on Rd is defined as

k (x, x′) := exp (〈x, x′〉)
14



A famous infinite feature space kernel

Example (Exponentiated quadratic kernel)

k (x, x′) = exp

(
−‖x− x′‖2

2σ2

)
=

∞∑
ℓ=1

(√
λℓeℓ(x)

)
︸ ︷︷ ︸

ϕℓ(x)

(√
λℓeℓ (x′)

)
︸ ︷︷ ︸

ϕℓ(x′)

λℓeℓ(x) =
∫

k (x, x′) eℓ (x′)p (x′)dx′

p(x) = N
(
0, σ2

)
where

λℓ ∝ bℓ b < 1

eℓ(x) ∝ exp
(
−(c− a)x2

)
Hℓ(x

√
2c)

a,b, c are functions of σ, and Hℓ is ℓ-th order Hermite polynomial (i.e., orthogonal
polynomial sequence). 15



Positive definite functions

Given a function of two arguments, k (x, x′), how can we determine if it is a valid
kernel?

1. Find a feature map?
▶ Sometimes this is not obvious (e.g. if the feature vector is infinite-dimensional, e.g.

the exponentiated quadratic kernel in the last slide)
▶ The feature map is not unique.

2. A direct property of the function: positive definiteness.
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Positive definiteness

■ All kernel functions are positive definite
■ In fact, if we have a positive definite function, we know there exist one (or more)

feature spaces for which the kernel defines the inner product.
■ We are not obliged to define the feature spaces explicitly!

Definition (Positive definite functions)
A symmetric function k : X × X → R is positive definite if
∀n ≥ 1, ∀ (a1, . . . an) ∈ Rn, ∀ (x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajk
(
xi, xj

)
≥ 0

The function k(·, ·) is strictly positive definite if, for mutually distinct xi, the equality
holds only when all the ai are zero.
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Kernels are positive definite

Theorem
Let H be any Hilbert space (not necessarily an RKHS), X a non-empty set, and ϕ : X → H.
Then k(x, y) := 〈ϕ(x), ϕ(y)〉H is a positive definite function.

Proof:

n∑
i=1

n∑
j=1

aiajk
(
xi, xj

)
=

n∑
i=1

n∑
j=1

〈
aiϕ (xi) ,ajϕ

(
xj
)〉

H

=

〈 n∑
i=1

aiϕ (xi) ,
n∑

j=1
ajϕ
(
xj
)〉

H

=

∥∥∥∥∥
n∑

i=1
aiϕ (xi)

∥∥∥∥∥
2

H

≥ 0
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The reproducing kernel
Hilbert space



Reproducing kernel Hilbert space

■ So far, I have introduced some notation and properties on feature spaces and
kernels.

■ We conclude that these kernels are positive definite.
■ In this section, we use these kernels to define functions on X .
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Constructing an RKHS from a Kernel

■ In this section, we claim how any positive definite kernel function k defined in the
Cartesian product space X × X can be used to construct a particular Hilbert
space of functions on X .

■ This Hilbert space is unique, and has the following property

Lemma (Kernel Trick)
∀x ∈ X , ∀f(·) ∈ H,

〈f(·), k(·, x)〉H = f(x)

■ Let us see an example!
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Finite space, polynomial features

■ From our motivating example we define a mapping ϕ : R2 → R3

x =

[
x1
x2

]
7→ ϕ(x) =

 x1
x2
x1x2


with kernel

k(x, y) =

 x1
x2
x1x2


⊤  y1

y2
y1y2


■ Let’s now define a function of the features x1, x2 and x1x2 of x, namely:

f(x) = ax1 + bx2 + cx1x2

■ The function f belongs to a space of functions mappings from X = R2 to R.
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Finite space, polynomial features

■ Defining an equivalent representation for f, we can define

f(·) =

 a
b
c


■ People sometimes write f rather than f(·). The notation f(x) ∈ R refers to the

function evaluated at a particular point.
■ Then, we can write

f(x) = f(·)⊤ϕ(x)
:= 〈f(·), ϕ(x)〉H

■ Meaning that the evaluation of f at x can be written as an inner product in feature
space and H is a space of functions mapping from R2 to R
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Functions of infinitely many features

■ We can write a function of infinitely many features with an exponentiated
quadratic kernel.

f(x) = 〈f, ϕ(x)〉H =
∞∑
ℓ=1

fℓϕℓ(x)

where the expression is bounded in absolute value as long as
∑∞

ℓ=1 f2ℓ < ∞

f(x) =
∞∑
ℓ=1

( m∑
i=1

αiϕℓ (xi)
)

︸ ︷︷ ︸
fℓ

ϕℓ(x)

=

〈 m∑
i=1

αiϕ (xi) , ϕ(x)
〉

H

=
m∑
i=1

αik (xi, x)

■ Nice! We got a function of infinitely many features expressed using m coefficients 23



RKHS

Theorem
Given any positive definite kernel function k, there is a unique Hilbert space H in which the
kernel satisfies reproducing property. It is known as the reproducing kernel Hilbert space
associated with k.

■ So there are 2 defining features of an RKHS:
1. The feature map of every point is a function: k(·, x) = ϕ(x) ∈ H for any x ∈ X , and

k (x, y) = ⟨ϕ(x), ϕ (y)⟩H = ⟨k(·, x), k (·, y)⟩H .

2. The reproducing property : ∀x ∈ X , ∀f ∈ H, ⟨f, k(·, x)⟩H = f(x)
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Tensor Products

Lemma (Tensor Products)
Suppose that H1 and H2 are reproducing kernel Hilbert spaces of real-valued functions
with domains X1 and X2, and equipped with kernels K1 and K2, respectively. Then the
tensor product space H = H1 ⊗H2 is an RKHS of real-valued functions with domain
X1 ×X2, and with kernel function

K ((x1, x2) , (x′1, x′2)) = K1 (x1, x′1)K2 (x2, x′2) .
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Fitting via kernel ridge regression

■ The RKHS is a practical hypothesis space for nonparametric regression.
■ Consider the output Y ∈ R and the input W ∈ W .
■ Our goal is to estimate the conditional expectation function γ0(w) = E[Y | W = w]

Definition
A kernel ridge regression estimator of γ0 is

γ̂ = argmin
γ∈H

1
n

n∑
i=1

{Yi − 〈γ, ϕ (Wi)〉H}2 + λ‖γ‖2H,

where λ > 0 is a hyperparameter on the ridge penalty ‖γ‖2H, which imposes
smoothness in estimation.

■ The feature map takes a value in the original space w ∈ W and maps it to a
feature in the RKHS ϕ(w) ∈ H.
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KRR

■ The solution to the optimization problem has a well-known closed form
(Kimeldorf & Wahba, 1971), given by :

γ̂(w) = Y⊤ (KWW + nλI)−1KWw.

■ The closed-form solution involves the kernel matrix KWW ∈ Rn×n with (i, j) -th entry
K
(
Wi,Wj

)
and the kernel vector KWw ∈ Rn with i th entry K (Wi,w).

■ To tune the ridge hyperparameter λ, both generalized cross-validation and
leave-one-out cross-validation have closed-form solutions, and the former is
asymptotically optimal (Craven & Wahba, 1978; Li, 1986).
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How to fit a KRR in python?

from sklearn.kernel_ridge import KernelRidge

# Generate synthetic data
X_train = np.sort(5 * np.random.rand(40, 1), axis=0)
y_train = np.sin(X_train).ravel()
# Add noise to every fifth data point
y_train[::5] += 3 * (0.5 - np.random.rand(8))
X_test = np.linspace(0, 5, 100)[:, np.newaxis]

# Fit Kernel Ridge Regression model
alpha = 1e-5 # Regularization parameter
kernel = 'rbf' # Gaussian Radial Basis Function (RBF) kernel
gamma = 0.1 # Kernel coefficient for RBF kernel

kr = KernelRidge(alpha=alpha, kernel=kernel, gamma=gamma)
kr.fit(X_train, y_train)

# Predict
y_pred = kr.predict(X_test)
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How to fit a KRR in python?
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Application: Kernel Ridge
Regression with Continuous
Treatments



Kernel Methods for Causal Functions

■ Singh et al. (2023) use RKHS and the Riesz representer theorem to propose a
nonparametric estimator for dose response curves and other causal parameters
that are inner products of kernel ridge regression.

■ Treatments and covariates may be discrete or continuous
■ The estimator has a closed-form solution due to the use of kernel trick specific to
RKHS.

■ Empirical Application: Using the Job Corps training experiment, they showed that
different intensities of job training (e.g., hours of training) have smooth effects on
counterfactual employment.
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Kernel Methods for Causal Functions

■ Let the treatment be a continuous treatment D and some covariates X ∈ X .
■ The dose response, a generalization of ATE, is given by θATE

0 (d) = E
{
Y(d)
}
, which is

the counterfactual mean outcome given the intervention D = d for the entire
population P.

■ Under the selection on observables assumptions, we can identify the causal
function of interest as an integral of the regression function γ0 such that

θATE
0 (d) =

∫
γ0(d, x)dP(x)

where γ0(d, x) = E(Y | D = d, X = x)
■ Estimation of nonparametric causal functions such as θATE

0 are computationally
demanding.

■ The reproducing kernel Hilbert space RKSH H solves the technical issues when
estimating causal functions with a continuous treatment.
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Riesz representation

■ With continuous treatment, fix the values d and define the linear functional
F : γ0 7→

∫
γ0(d, x)dP(x) so that the dose response curve evaluated at d is

θ0(d) = F (γ0).
■ By the Riesz representation theorem, since F is a bounded linear functional over a

Hilbert space, it admits an inner product representation within that Hilbert
space: there exists some α̃0 ∈ H such that F(γ) = 〈γ, α̃0〉H for all γ ∈ H.

■ In particular, θ0(d) = 〈γ0, α̃0〉H.
■ The Riesz representation separates the steps of nonparametric causal estimation

in the RKHS into three simple steps:
1. Estimate the regression γ0

2. Estimate α̃0, which embeds P(x)
3. Computer their inner product.

■ Based on this argument, they propose nonparametric estimators that are inner
products of kernel ridge regressions, which therefore have closed-form solutions.
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Decoupled representation and closed-form solution

■ Let kD : D ×D → R and kX : X × X → R be measurable positive definite kernels
corresponding to scalar-valued RKHSs HD and HX .

■ Define the feature maps ϕD : D → HD,d 7→ kD(d, ·);ϕX : X → HX , x 7→ kX (x, ·).
■ We assume that regression γ0 is an element of RKHS H with kernel

k ((d, x); (d′, x′)) = kD (d,d′) kX (x, x′).
■ Under RKHS regularity conditions, θATE0 (d) = 〈γ0, ϕ(d)⊗ µx〉H, where

µx =
∫
ϕ(x)dP(x);

Lemma (Estimation)
Denote by KDD,KXX ∈ Rn×n the empirical kernel matrices calculated from observations
drawn from population P. Denote by � the elementwise product. The causal function
estimator has closed-form solution

θ̂ATE(d) = n−1
n∑

i=1
Y⊤ (KDD � KXX + nλI)−1 (KDd � KXxi)
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US Job Corps

■ This paper estimates the dose response function of the Job Corps, the largest job
training program for disadvantaged youth in the United States.

■ Although access to the program was randomized, the participants could decide
whether to participate and how many hours.

■ The continuous treatment D ∈ R is the total hours spent in academic or vocational
classes in the first year after randomization, and the continuous outcome Y ∈ R
is the proportion of weeks employed in the second year after randomization.

■ The covariates X ∈ R40 include age, gender, ethnicity, language competency,
education, marital status, household size, household income, previous receipt of
social aid, family background, health and health-related behavior at the base
line.

■ The dose response curve plateaus and reaches its maximum around d = 500,
corresponding to 12.5 weeks of classes.
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Results
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