Semiparametric Efficiency Theory in Causal Inference

Marcelo Ortiz-Villavicencio

April 1, 2024 Econometrics Reading Group

Roadmap

1. Introduction

- 2. Setup
- 3. Semiparametric Theory
 - **Influence Functions**
 - **Deriving Influence Functions**
 - Efficient Influence Function for ATE

4. Application: Non-parametric methods for doubly robust estimation of continuous treatments

- Identification
- Methodology

Introduction

- Most of this presentation is based on Kennedy (2016, 2023) work.
- In this presentation I want to review important aspects of *semiparametric theory* and *empirical process* that arise in causal inference problems.
- Under semiparametric models, we would like to allow parts of the DGP to be unrestricted if they are not of particular interest (i.e., nuisance functions).
- Semiparametric Theory gives us a framework for benchmarking *efficiency* and constructing estimators in such settings.
- All these tools support the incorporation of machine learning and other data-driven methods in causal inference (The basics before DML!).

Setup

- The first step in any causal inference application is define the *causal parameter of interest*.
- This parameter (or even a function) is formulated in terms of hypothetical interventions and counterfactual data (i.e, what would have been observed under some intervention?).
- Let $Y \in \mathbb{R}$ denote the outcome of interest and $D \in \{0, 1\}$ denote a *binary treatment*.
- Let Y(d) denote the *potential outcome* that would have been observed under treatment level D = d.
- Throughout this presentation let's assume that our causal parameter of interest is the ATE:= $\psi = \mathbb{E}[Y(1) Y(0)]$

- \rightarrow ATE:
- $\rightarrow~$ conditional ATE:
- $\rightarrow\,$ local ATE:
- \rightarrow dose-response curve:
- ightarrow heterogenous response curve:
- \rightarrow optimal treatment strategy:

 $\mathbb{E} [Y(1) - Y(0)]$ $\mathbb{E} [Y(1) - Y(0) | X = x]$ $\mathbb{E} [Y(1) - Y(0) | D(1) > D(0)]$ $\mathbb{E} [Y(d)]$ $\mathbb{E} [Y(d) | X = x]$ $\arg \max_{d} \mathbb{E} [Y^{d(X)}]$

- Identification is nothing more than translate the causal question of interest into a statistical problem defined in terms of observed data. For ATE we typically consider the following:
 - 1. Consistency: $D = d \implies Y = Y(d)$.
 - 2. **Unconfoundedness:** $Y(d) \perp D \mid X$, $d = \{0, 1\}$. This assumption could be stronger that needed for ATE. We need $\mathbb{E}[Y(d) \mid X = x] = \mathbb{E}[Y(d) \mid D = d, X = x]$.
 - 3. **Positivity:** $p(D = d | X = x) \ge \delta > 0$ whenever p(X = x) > 0. This means each unit has a *non-zero* probability to receive treatment level D = d regardless of covariate value.

If the 3 conditions above hold, it follows that

$$p(Y(d) = y | X = x) = p(Y = y | X = x, D = d)$$

- The previous result means we can express the conditional distribution of the potential outcome Y(d) given X in terms of observed data.
- Thus we can also identify the conditional distribution given any subset of X by simply marginalizing.

$$\psi = \int_{\mathscr{X}} \{ \mathbb{E}(Y \mid X = x, D = 1) - \mathbb{E}(Y \mid X = x, D = 0) \} dP(X = x)$$

This identification result is an example of the g-computation formula which was proposed by Robins (1986).

• $\psi^*(\mathbb{P}^*)$ is a map from a counterfactual distribution \mathbb{P}^*

 $\blacksquare \rightarrow$ can be a number, or function, or even more complex object

Causal Inference is over after identification

- A helpful approach is to think of the problem of causal identification and the problem of statistical estimation as separate issues.
- Causal identification only tells us what we should be estimating, not how to estimate it.
- After picking ψ^* , we need to express $\psi^* (\mathbb{P}^*) = \psi(\mathbb{P})$ for some mapping ψ and observational population distribution \mathbb{P}

Now we have a pure functional estimation problem.

Semiparametric Theory

- In this section, we give a general review of *semiparametric theory*, using as a running example the common problem of estimating an ATE.
- Standard semiparametric theory generally considers the following setting:
 - ▶ Observe iid sample Z_1, \ldots, Z_n with $Z \sim \mathbb{P}$, assuming $\mathbb{P} \in \mathcal{P}$ is a unknown probability distribution on the Borel σ -field \mathcal{B} for some sample space.
 - ▶ The general goal is estimation and inference for some target parameter $\psi = \psi(\mathbb{P}) \in R^p$, where $\psi = \psi(\mathbb{P})$ is a map from a probability distribution to the parameter space (assumed to be Euclidean here).
 - We want to construct a *good estimator* $\hat{\psi}$ of $\psi = \psi(\mathbb{P})$
- A *statistical model P* is a set of possible probability distributions, which is assumed to contain the observed data distribution P.

- In a parametric model, \mathcal{P} is assumed to be indexed by a finite-dimensional real-valued parameter $\theta \in \mathbb{R}^q$. For example, if *Z* is a scalar RV one might assume it is normally distributed in which case the model is indexed by $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$.
- Semiparametric models are simply sets of probability distributions that cannot be indexed by only a Euclidean parameter, that is, models that are indexed by an *infinite-dimensional* parameter.
- Examples:
 - ▶ *nonparametric models* for which *P* consists of all possible probability distributions.
 - simple regression models that characterize the regression function *parametrically* but leave the residual error distribution unspecified.

Influence Functions

- Influence functions allow us to characterize a wide range of estimators and their efficiency.
- Let $\mathbb{P}_n = n^{-1} \sum_i \delta_{Z_i}$ denote the *empirical distribution* of the data, where δ_z is the *Dirac measure* that simply indicates whether Z = z.
- This means for example that empirical averages can be written as $n^{-1} \sum_i f(Z_i) = \int f(z) d\mathbb{P}_n = \mathbb{P}_n \{ f(Z) \}.$

Definition

An estimator $\hat{\psi} = \hat{\psi}(\mathbb{P}_n)$ is *asymptotically linear* with influence function ϕ if the estimator can be approximated by an empirical average in the sense that

$$\hat{\psi} - \psi_0 = \mathbb{P}_n\{\phi(Z)\} + o_\rho(1/\sqrt{n}),$$

where ϕ has mean zero and finite variance (i.e., $\mathbb{E}\{\phi(Z)\} = 0$ and $\mathbb{E}\{\phi(Z)^{\otimes 2}\} < \infty$).

Theorem

By CLT, an estimator $\hat{\psi}$ with influence function ϕ is asymptotically normal with

$$\sqrt{n}\left(\hat{\psi}-\psi_{0}
ight)\rightsquigarrow N\left(0,\mathbb{E}\left\{\phi(Z)^{\otimes2}
ight\}
ight)$$

- Thus if we know the Influence functions for an estimator, we know its asymptotic distribution, and we can easily construct confidence intervals and hypothesis tests.
- Furthermore, *efficient influence function* for an asymptotically linear estimator is almost surely unique, so in a sense, the influence function contains all information about the asymptotic behavior of an estimator.

- Our next goal is to understand how well can we possibly hope to estimate the parameter ψ over the model \mathcal{P} .
- A classic *benchmarking* or *lower bound* results for smooth parametric models in the so-called *Cramer-Rao Lower Bound*.

Definition (CRLB)

For smooth parametric models $\mathcal{P} = \{P_{\theta} : \theta \in \mathbb{R}\}$ and smooth functionals (i.e., with P_{θ} and $\psi(\theta)$ differentiable in θ), the variance of any unbiased estimator $\hat{\psi}$ must satisfy

$$\mathsf{var}_{ heta}(\widehat{\psi}) \geq rac{\psi'(heta)^2}{\mathsf{var}_{ heta}\left\{\mathsf{s}_{ heta}(\mathsf{Z})
ight\}},$$

where $s_{\theta}(z) = \frac{\partial}{\partial \theta} \log p_{\theta}(z)$ is the score function.

• i.e., no unbiased estimator can have smaller variance than the above ratio.

Efficiency Bounds

A standard way to benchmark estimation error more generally is through minimax lower bounds of the form

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\{ \widehat{\psi} - \psi(P) \}^2 \right] \geq R_n$$

Intuition: the risk for estimating ψ (in this case, in terms of worstcase mean squared error), over the model \mathcal{P} , cannot be smaller than R_n

Theorem (Theorem 8.11, van der Vaart (2000))

Assume P_{θ} is differentiable in quadratic mean at θ with nonsingular Fisher information $I_{\theta} = \operatorname{var}_{\theta} \{ s_{\theta}(Z) \}$. If $\psi(\theta)$ is differentiable at θ , with $\psi'(\theta) = \frac{\partial}{\partial \theta} \psi(\theta)$, then for any estimator $\hat{\psi}$ it follows that

$$\inf_{\delta>0} \liminf_{n\to\infty} \sup_{\|\theta'-\theta\|<\delta} n\mathbb{E}_{\theta'} \left[\left\{ \widehat{\psi} - \psi\left(\theta'\right) \right\}^2 \right] \geq \psi'(\theta) \operatorname{var}_{\theta} \left\{ s_{\theta}(Z) \right\}^{-1} \psi'(\theta)^{\top}$$

Intuition: the (asymptotic, worst-case) mean squared error cannot be smaller than $\psi'(\theta)^2/n \operatorname{var}_{\theta} \{s_{\theta}(Z)\}$, for any estimator $\widehat{\psi}$ in a smooth parametric model.

Paremetric Submodels

- Can the above Cramer-Rao bounds be exploited to construct lower bound benchmarks in semi- or non-parametric models?
- The standard way to do so is through a *parametric submodel*.

Definition

A parametric submodel is a smooth parametric model $\mathcal{P}_{\epsilon} = \{P_{\epsilon} : \epsilon \in \mathbb{R}\}$ that satisfies (i) $\mathcal{P}_{\epsilon} \subseteq \mathcal{P}$, and (ii) $P_{\epsilon=0} = \mathbb{P}$.

- The high-level idea behind the use of submodels is that it is never harder to estimate a parameter over a *smaller model*, relative to a larger one in which the smaller model is *contained*.
- Therefore, any lower bound for a submodel will also be a valid lower bound for the larger model *P*.
- Since any lower bound for the submodel \mathcal{P}_{ϵ} is also a lower bound for \mathcal{P} , the best and most informative is the *greatest* such lower bound.

Pathwise Differentiability and Distributional Taylor Expansion EMORY

 Recall the CRLB for submodel P_ε is given by ^{{∂∂εψ(P_ε)|_{ε=0}}²}
 ^EP_ε {s_ε(Z)²}
 To find the best such lower bound, we would like to optimize the above over all P_ε in some submodel.

Definition (Distributional Taylor Expansion)

Suppose the functional $\psi : \mathcal{P} \mapsto \mathbb{R}$ is smooth, in the sense that it admits a kind of distributional Taylor expansion

$$\psi(\bar{P}) - \psi(P) = \int \varphi(z;\bar{P})d(\bar{P}-P)(z) + R_2(\bar{P},P)$$

for distributions \overline{P} and P, often called a *von Mises expansion*, where $\varphi(z; P)$ is a meanzero, finite-variance function satisfying $\int \varphi(z; P)dP(z) = 0$ and $\int \varphi(z; P)^2 dP(z) < \infty$, and $R_2(\overline{P}, P)$ is a 2nd-order remainder term.

Intuition: describes how ψ changes locally, when moving from *P* to \overline{P} . Any φ satisfying above is an influence function for ψ .

Example ATE

Example

The average treatment effect

$$\psi(P) = \mathbb{E}_P \{ \mathbb{E}_P(Y \mid X, D = 1) \}$$

satisfies von Mises expansion with

$$\varphi(Z; P) = \frac{1(D=1)}{P(D=1 \mid X)} \{Y - \mathbb{E}_{P}(Y \mid X, D=1)\} + \mathbb{E}_{P}(Y \mid X, D=1) - \psi(P)$$

and

$$R_2(\bar{P},P) = \int \left\{ \frac{1}{\bar{\pi}(x)} - \frac{1}{\pi(x)} \right\} \left\{ \mu(x) - \bar{\mu}(x) \right\} \pi(x) dP(x)$$

where $\pi(x) = P(D = 1 | X = x)$ and $\bar{\pi}(x) = \bar{P}(D = 1 | X = x)$, and similarly for $\mu(x) = \mathbb{E}_P(Y | X = x, D = 1)$.

- We now have enough to characterize the greatest *lower bound* for generic smooth parametric submodels.
- A common choice of submodel for nonparametric \mathcal{P} is, for some mean-zero function $h : \mathcal{Z} \to \mathbb{R}$,

$$p_{\epsilon}(z) = d\mathbb{P}(z)\{1 + \epsilon h(z)\}$$

where $\|h\|_{\infty} \leq M < \infty$ and $\epsilon < 1/M$ so that $p_{\epsilon}(z) \geq 0$. For this submodel the score function is $\frac{\partial}{\partial \epsilon} \log p_{\epsilon}(z)|_{\epsilon=0} = \frac{\partial}{\partial \epsilon} \log \{1 + \epsilon h(z)\}|_{\epsilon=0} = h(z)$.

For previous submodel, the score is $s_{\epsilon}(z) = h(z)$ and by *pathwise differentiability* we have

$$\left.\frac{\partial}{\partial \epsilon}\psi\left(\mathsf{P}_{\epsilon}\right)\right|_{\epsilon=0}=\int\varphi(z;\mathbb{P})h(z)d\mathbb{P}(z).$$

Therefore over all CRLB at $\epsilon = 0$ we have

$$\sup_{P_{\epsilon}} \frac{\psi'\left(P_{\epsilon}\right)^{2}}{\operatorname{var}\left\{s_{\epsilon}(Z)\right\}} = \sup_{h} \frac{\mathbb{E}\{\varphi(Z; \mathbb{P})h(Z)\}^{2}}{\mathbb{E}\left\{h(Z)^{2}\right\}} \leq \mathbb{E}\left\{\varphi(Z; \mathbb{P})^{2}\right\} = \operatorname{var}\{\varphi(Z)\}$$

where the first equality follows by *pathwise differentiability* and the form of the submodel, and the inequality by *Cauchy-Schwarz*.

Therefore $var{\varphi(Z)}$ is nonparametric analog of CRLB! - we call φ the efficient influence function.

- There are at least 3 ways to derive IFs.
- Most general: compute derivative $\psi'(\mathbb{P}_{\epsilon})$ and solve for φ
- Often easier to pretend data are discrete and compute Gateaux derivative in direction of point mass contamination
- Kennedy Method: use chain/product rules w/ simple IFs as building blocks:
- TRICK 1 Pretend the data are discrete.
- TRICK 2 Treat IFs as derivatives, allowing use of differentiation rules. For example, let $\mathbb{IF}: \Psi \to L_2(\mathbb{P})$ map functional $\psi: \mathcal{P} \to \mathbb{R}$ to its IF $\varphi(z) \in L_2(\mathbb{P})$ in a nonparametric model. Then:
- TRICK 2a (product rule) $\mathbb{IF}(\psi_1\psi_2) = \mathbb{IF}(\psi_1)\psi_2 + \psi_1\mathbb{IF}(\psi_2)$
- TRICK 2b (chain rule) $\mathbb{IF}(f(\psi)) = f'(\psi)\mathbb{IF}(\psi)$
- TRICK 3 Use influence function building blocks, e.g.,

$$\mathbb{IF}(\mathbb{E}(Y \mid X = x)) = \frac{1(X = x)}{\mathbb{P}(X = x)} \{Y - \mathbb{E}(Y \mid X = x)\}$$

Example

Let $\mu(x) = \mathbb{E}(Y | X = x, D = 1), \pi(x) = \mathbb{P}(D = 1 | X = x)$, and $p(x) = \mathbb{P}(X = x)$, and let $\psi = \mathbb{E}\{\mathbb{E}(Y | X, D = 1)\}$ denote the ATE. Then the influence function is given by

$$\mathbb{IF}(\psi) = \mathbb{IF}\left\{\sum_{x} \mu(x)p(x)\right\} = \sum_{x} [\mathbb{IF}\{\mu(x)\}p(x) + \mu(x)\mathbb{IF}\{p(x)\}]$$
$$= \sum_{x} \frac{1(X = x, D = 1)}{p(1, x)} \{Y - \mu(x)\}p(x) + \mu(x)\{1(x = X) - p(x)\}\right]$$
$$= \frac{D}{\pi(X)} \{Y - \mu(X)\} + \mu(X) - \psi$$

where the first equality follows by Trick 1, the second by Trick 2a, the third by Trick 3, and the fourth by rearranging.

Application: Non-parametric methods for doubly robust estimation of continuous treatments

Big Picture

- Kennedy et al (2017) shows how we can apply the previous concepts for more complex causal parameter like the ones with continuous treatments.
- This paper develops a novel kernel smoothing approach with mild smoothness assumptions on the effect curve allowing for doubly robust covariate adjustment.
- Derives asymptotic properties and provides a data-driven procedure for bandwidth selection.
- Illustrates its perks via simulations and a study of the effect of nurse staffing on hospital readmission penalties.
- Empirical Application: Study whether *nurse staffing* (the treatment, measured in nurse hours per patient day) affected hospitals' risk of excess readmission penalty (in the context of the Hospital re-admissions reduction program (2012)).
 Hospitals differ in many important ways that could be related to both nurse
- ⇒ Hospitals differ in many important ways that could be related to both nurse staffing and excess re-admissions like size, location, teaching status, etc. To make fair comparisons, we must adjust for hospital characteristics!

- We are interested in *continuous treatments* such as dose, duration, or frequency that arise often in observational studies.
- Such treatments lead to effects that are described by *dose-response curves* rather than scalars as in binary treatments.
- There 2 methodological challenges in this setting:
 - 1. How to discover underlying structure of dose-response curves *without imposing* a prior *shape restrictions*.
 - 2. How to adjust properly for *high dimensional confounders*.

• One of the approaches for estimating continuous treatment effects is based on *regression modeling*.

- Needs correct specification of the outcome model
- Does not incorporate available information about the treatment mechanism
- Sensitive to the curse of dimensionality.
- Another one is *semiparametric doubly robust*
 - Rely on parametric models for the dose-response estimation.
- Recent work extended semiparametric doubly robust methods to non-parametric and high dimensional settings
- This paper: New approach for *causal dose-response* that is *DR* without requiring parametric assumptions and can incorporate general ML methods.

- i.i.d sample $(\mathbf{Z}_1, \ldots, \mathbf{Z}_n)$ where $\mathbf{Z} = (\mathbf{L}, A, Y)$ has support $\mathcal{Z} = (\mathcal{L} \times \mathcal{A} \times \mathcal{Y})$
- L denotes a vector of covariates, *A* a continuous treatment and *Y* outcome of interest
- Let *Y^a* potential outcome under *treatment level a*
- Denote the distribution of **Z** by *P*, with density $p(\mathbf{z}) = p(y | \mathbf{I}, a)p(a | \mathbf{I})p(\mathbf{I})$
- Denote mean outcome given covariates and treatment as $\mu(\mathbf{I}, a) = \mathbb{E}(Y | \mathbf{L} = \mathbf{I}, A = a)$
- Let conditional treatment density given covariates $\pi(a \mid \mathbf{I}) = \partial P(A \leq a \mid \mathbf{L} = \mathbf{I}) / \partial a$
- Let marginal treatment density $\varpi(a) = \partial P(A \leqslant a) / \partial a$.

• Our goal is to estimate the *effect curve* $\theta(a) = \mathbb{E}[Y^a]$.

Assumption (Consistency)

A = a implies $Y = Y^a$. No interference and no different versions of the treatment

Assumption (Positivity)

 $\pi(a \mid \mathbf{I}) \ge \pi_{\min} > 0$ for all $\mathbf{I} \in \mathcal{L}$. Every subject has some chance of receiving treatment level *a*, regardless of covariates.

Assumption (Ignorability)

 $\mathbb{E}(Y^{a} | \mathbf{L}, A) = \mathbb{E}(Y^{a} | \mathbf{L})$. Treatment assignment is unrelated to potential outcomes within strata of covariates.

Previous assumptions are satisfied in RCTs, but in observational studies may be violated and generally untestable.

Definition (Identification)

Under assumptions 1-3, the effect curve $\theta(a)$ can be identified with observed data as

$$heta(a) = \mathbb{E}\{\mu(\mathbf{L}, a)\} = \int_{\mathcal{L}} \mu(\mathbf{I}, a) \mathrm{d} P(\mathbf{I})$$

- This paper derive *doubly robust estimators* for $\theta(a)$ without relying on parametrics models.
- Our goal is to *find a function* ξ(**Z**; π, μ) of the observed data **Z** and nuisance functions (π, μ) such that

$$\mathbb{E}\{\xi(\mathbf{Z}; \bar{\pi}, \bar{\mu}) \mid \mathbf{A} = \mathbf{a}\} = \theta(\mathbf{a})$$

if either $\bar{\pi} = \pi$ or $\bar{\mu} = \mu$ (not necessarily both).

Given such a mapping, off-the-shelf non-parametric regression and machine learning methods could be used to estimate $\theta(a)$ by regressing $\xi(\mathbf{Z}; \hat{\pi}, \hat{\mu})$ on treatment A, based on estimates $\hat{\pi}$ and $\hat{\mu}$.

This mapping is related to the *efficient influence function* for a particular parameter.

If
$$\mathbb{E}\{\xi(\mathbf{Z}; \bar{\pi}, \bar{\mu}) \mid \mathbf{A} = a\} = \theta(a)$$
 then it follows that $\mathbb{E}\{\xi(\mathbf{Z}; \bar{\pi}, \bar{\mu})\} = \psi$ for

$$\psi = \int_{\mathcal{A}} \int_{\mathcal{L}} \frac{\mu(\mathbf{I}, a)}{\text{expected outcome given cov. + treat. marginal treat. density}} dP(\mathbf{I}) da.$$

The *efficient influence function* $\phi(\mathbf{Z}; \pi, \mu)$ will be doubly robust such that $\mathbb{E}\{\phi(\mathbf{Z}; \pi, \mu)\} = \mathbb{E}\{\xi(\mathbf{Z}; \pi, \mu) - \psi\} = 0$, so $\mathbb{E}\{\xi(\mathbf{Z}; \bar{\pi}, \bar{\mu})\} = \psi$ if either $\bar{\pi} = \pi$ or $\bar{\mu} = \mu$.

- The parameter ψ represents the average outcome under an intervention that randomly assigns treatment based on the density *π*.
- The efficient influence function for ψ has not been given before under a *non-parametric model* (i.e., suppose that the marginal density ϖ is unknown).

Theorem (Efficient Influence Function under Non-parametric model)

Under a non-parametric model, the efficient influence function for ψ is

$$\xi(\mathbf{Z};\pi,\mu) - \psi + \int_{\mathcal{A}} \left\{ \mu(\mathbf{L}, \boldsymbol{a}) - \int_{\mathcal{L}} \mu(\mathbf{I}, \boldsymbol{a}) \mathrm{d} P(\mathbf{I}) \right\} \varpi(\boldsymbol{a}) \mathrm{d} \boldsymbol{a}$$

where $\xi(\mathbf{Z}; \pi, \mu) = \frac{\gamma - \mu(\mathbf{L}, A)}{\pi(A \mid \mathbf{L})} \int_{\mathcal{L}} \pi(A \mid \mathbf{I}) dP(\mathbf{I}) + \int_{\mathcal{L}} \mu(\mathbf{I}, A) dP(\mathbf{I})$

- Our goal is to derive a doubly robust mapping $\xi(\mathbf{Z}; \pi, \mu)$ for which $\mathbb{E}\{\xi(\mathbf{Z}; \bar{\pi}, \bar{\mu}) \mid A = a\} = \theta(a)$, as long as either $\bar{\pi} = \pi$ or $\bar{\mu} = \mu$, in a *two-step procedure*:
 - 1. Estimate nuisance functions (π, μ) and obtain predicted values.
 - 2. Construct pseudo-outcome $\hat{\xi}(\mathbf{Z}; \hat{\pi}, \hat{\mu})$ and regress on treatment variable A.

- For step 2, one can propose an estimator that uses kernel smoothing such as *Local Linear Kernel Regression*.
- Let $\hat{\theta}_h(a) = \mathbf{g}_{ha}(a)^{\mathrm{T}} \hat{\beta}_h(a)$, where $\mathbf{g}_{ha}(t) = (1, (t-a)/h)^{\mathrm{T}}$ and

$$\hat{\boldsymbol{\beta}}_{h}(\boldsymbol{\alpha}) = \underset{\boldsymbol{\beta} \in \mathbb{R}^{2}}{\arg\min} \mathbb{P}_{n} \left[K_{ha}(\boldsymbol{A}) \left\{ \hat{\boldsymbol{\xi}}(\boldsymbol{Z}; \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\mu}}) - \boldsymbol{\mathsf{g}}_{ha}(\boldsymbol{A})^{\mathrm{T}} \boldsymbol{\beta} \right\}^{2} \right]$$

for $K_{ha}(t) = h^{-1}K\{(t - a)/h\}$ with *K* a *standard kernel function* (e.g. a symmetric probability density) and *h* a *scalar bandwidth* parameter.

Thanks! marcelo.ortiz@emory.edu

တ္ marcelortiz.com

У @marcelortizv

References

- Kennedy, E. H. (2015). Semiparametric Theory and Empirical Processes in Causal Inference. arXiv. https://arxiv.org/abs/1510.04740
- Kennedy, E. H., Ma, Z., McHugh, M. D., Small, D. S. (2017). Nonparametric methods for doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society: Series B, 79(4), 1229-1245. https://doi.org/10.1111/rssb.12212 (arXiv:1507.00747)