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Introduction



Introduction

■ Most of this presentation is based on Kennedy (2016, 2023) work.
■ In this presentation I want to review important aspects of semiparametric theory
and empirical process that arise in causal inference problems.

■ Under semiparametric models, we would like to allow parts of the DGP to be
unrestricted if they are not of particular interest (i.e., nuisance functions).

■ Semiparametric Theory gives us a framework for benchmarking efficiency and
constructing estimators in such settings.

■ All these tools support the incorporation of machine learning and other
data-driven methods in causal inference (The basics before DML!).
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Setup



Setup

■ The first step in any causal inference application is define the causal parameter of
interest.

■ This parameter (or even a function) is formulated in terms of hypothetical
interventions and counterfactual data (i.e, what would have been observed
under some intervention?).

■ Let Y ∈ R denote the outcome of interest and D ∈ {0,1} denote a binary
treatment.

■ Let Y(d) denote the potential outcome that would have been observed under
treatment level D = d.

■ Throughout this presentation let’s assume that our causal parameter of interest
is the ATE:= ψ = E[Y(1)− Y(0)]
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Examples

→ ATE: E [Y(1)− Y(0)]
→ conditional ATE: E [Y(1)− Y(0) | X = x]
→ local ATE: E [Y(1)− Y(0) | D(1) > D(0)]
→ dose-response curve: E [Y(d)]
→ heterogenous response curve: E [Y(d) | X = x]
→ optimal treatment strategy: argmaxd E

[
Yd(X)

]
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Identification Assumptions

■ Identification is nothing more than translate the causal question of interest into a
statistical problem defined in terms of observed data. For ATE we typically
consider the following:
1. Consistency: D = d =⇒ Y = Y(d).
2. Unconfoundedness: Y(d) ⊥ D | X, d = {0, 1}. This assumption could be stronger

that needed for ATE. We need E[Y(d) | X = x] = E[Y(d) | D = d, X = x].
3. Positivity: p(D = d | X = x) ≥ δ > 0 whenever p(X = x) > 0. This means each unit has

a non-zero probability to receive treatment level D = d regardless of covariate value.

■ If the 3 conditions above hold, it follows that

p(Y(d) = y | X = x) = p(Y = y | X = x,D = d)
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G-computation formula

■ The previous result means we can express the conditional distribution of the
potential outcome Y(d) given X in terms of observed data.

■ Thus we can also identify the conditional distribution given any subset of X by
simplymarginalizing.

ψ =

∫
X

{E(Y | X = x,D = 1)− E(Y | X = x,D = 0)}dP(X = x)

■ This identification result is an example of the g-computation formula which was
proposed by Robins (1986).
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Identification

■ ψ∗(P∗) is a map from a counterfactual distribution P∗

■ → can be a number, or function, or even more complex object

Counterfactual distribution P∗ Rq or some function space
ψ∗
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Causal Inference is over after identification

■ A helpful approach is to think of the problem of causal identification and the
problem of statistical estimation as separate issues.

■ Causal identification only tells us what we should be estimating, not how to
estimate it.

■ After picking ψ∗, we need to express ψ∗ (P∗) = ψ(P) for some mapping ψ and
observational population distribution P

Counterfactual
population P∗ Identification

Observational
population P

Sample

■ Now we have a pure functional estimation problem. 8



Semiparametric Theory



Semiparametric Models

■ In this section, we give a general review of semiparametric theory, using as a
running example the common problem of estimating an ATE.

■ Standard semiparametric theory generally considers the following setting:
▶ Observe iid sample Z1, . . . , Zn with Z ∼ P, assuming P ∈ P is a unknown probability

distribution on the Borel σ-field B for some sample space.
▶ The general goal is estimation and inference for some target parameter
ψ = ψ(P) ∈ Rp, where ψ = ψ(P) is a map from a probability distribution to the
parameter space (assumed to be Euclidean here).

▶ We want to construct a good estimator ψ̂ of ψ = ψ(P)

■ A statistical model P is a set of possible probability distributions, which is
assumed to contain the observed data distribution P.
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Semiparametric Models

■ In a parametric model, P is assumed to be indexed by a finite-dimensional
real-valued parameter θ ∈ Rq. For example, if Z is a scalar RV one might assume
it is normally distributed in which case the model is indexed by
θ =

(
µ, σ2

)
∈ R× R+.

■ Semiparametric models are simply sets of probability distributions that cannot
be indexed by only a Euclidean parameter, that is, models that are indexed by an
infinite-dimensional parameter.

■ Examples:
▶ nonparametric models for which P consists of all possible probability distributions.
▶ simple regression models that characterize the regression function parametrically

but leave the residual error distribution unspecified.
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Influence Functions

■ Influence functions allow us to characterize a wide range of estimators and their
efficiency.

■ Let Pn = n−1∑
i δZi denote the empirical distribution of the data, where δz is the

Dirac measure that simply indicates whether Z = z.
■ This means for example that empirical averages can be written as

n−1∑
i f (Zi) =

∫
f(z)dPn = Pn{f(Z)}.

Definition
An estimator ψ̂ = ψ̂ (Pn) is asymptotically linear with influence function ϕ if the
estimator can be approximated by an empirical average in the sense that

ψ̂ − ψ0 = Pn{ϕ(Z)}+ op(1/
√
n),

where ϕ has mean zero and finite variance (i.e., E{ϕ(Z)} = 0 and E
{
ϕ(Z)⊗2} <∞ ).
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Asymptotic Normality

Theorem
By CLT, an estimator ψ̂ with influence function ϕ is asymptotically normal with

√
n
(
ψ̂ − ψ0

)
⇝ N

(
0,E

{
ϕ(Z)⊗2

})

■ Thus if we know the Influence functions for an estimator, we know its asymptotic
distribution, and we can easily construct confidence intervals and hypothesis
tests.

■ Furthermore, efficient influence function for an asymptotically linear estimator is
almost surely unique, so in a sense, the influence function contains all
information about the asymptotic behavior of an estimator.
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Nonparametric Efficiency Bounds

■ Our next goal is to understand how well can we possibly hope to estimate the
parameter ψ over the model P .

■ A classic benchmarking or lower bound results for smooth parametric models in
the so-called Cramer-Rao Lower Bound.

Definition (CRLB)
For smooth parametric models P = {Pθ : θ ∈ R} and smooth functionals (i.e., with Pθ
and ψ(θ) differentiable in θ ), the variance of any unbiased estimator ψ̂ must satisfy

varθ(ψ̂) ≥
ψ′(θ)2

varθ {sθ(Z)}
,

where sθ(z) = ∂
∂θ log pθ(z) is the score function.

■ i.e., no unbiased estimator can have smaller variance than the above ratio.
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Efficiency Bounds

■ A standard way to benchmark estimation error more generally is through
minimax lower bounds of the form

inf
ψ̂

sup
P∈P

EP
[
{ψ̂ − ψ(P)}2

]
≥ Rn

Intuition: the risk for estimating ψ (in this case, in terms of worstcase mean
squared error), over the model P , cannot be smaller than Rn

Theorem (Theorem 8.11, van der Vaart (2000))
Assume Pθ is differentiable in quadratic mean at θ with nonsingular Fisher information
Iθ = varθ {sθ(Z)}. If ψ(θ) is differentiable at θ, with ψ′(θ) = ∂

∂θψ(θ), then for any estimator
ψ̂ it follows that

inf
δ>0

lim inf
n→∞

sup
∥θ′−θ∥<δ

nEθ′
[{
ψ̂ − ψ (θ′)

}2]
≥ ψ′(θ) varθ {sθ(Z)}−1

ψ′(θ)⊤

Intuition: the (asymptotic, worst-case) mean squared error cannot be smaller
than ψ′(θ)2/n varθ {sθ(Z)}, for any estimator ψ̂ in a smooth parametric model.
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Paremetric Submodels

■ Can the above Cramer-Rao bounds be exploited to construct lower bound
benchmarks in semi- or non-parametric models?

■ The standard way to do so is through a parametric submodel.

Definition
A parametric submodel is a smooth parametric model Pϵ = {Pϵ : ϵ ∈ R} that satisfies
(i) Pϵ ⊆ P , and (ii) Pϵ=0 = P.

■ The high-level idea behind the use of submodels is that it is never harder to
estimate a parameter over a smaller model, relative to a larger one in which the
smaller model is contained.

■ Therefore, any lower bound for a submodel will also be a valid lower bound for
the larger model P .

■ Since any lower bound for the submodel Pϵ is also a lower bound for P , the best
and most informative is the greatest such lower bound.
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Pathwise Differentiability and Distributional Taylor Expansion

■ Recall the CRLB for submodel Pϵ is given by { ∂
∂ϵψ(Pϵ)|ϵ=0}

2

EPϵ{sϵ(Z)2}
■ To find the best such lower bound, we would like to optimize the above over all

Pϵ in some submodel.
Definition (Distributional Taylor Expansion)
Suppose the functional ψ : P 7→ R is smooth, in the sense that it admits a kind of
distributional Taylor expansion

ψ(P̄)− ψ(P) =
∫
φ(z; P̄)d(P̄− P)(z) + R2(P̄,P)

for distributions P̄ and P, often called a von Mises expansion, where φ(z;P) is a
meanzero, finite-variance function satisfying

∫
φ(z;P)dP(z) = 0 and∫

φ(z;P)2dP(z) <∞, and R2(P̄,P) is a 2nd-order remainder term.

Intuition: describes how ψ changes locally, when moving from P to P̄. Any φ
satisfying above is an influence function for ψ. 16



Example ATE

Example
The average treatment effect

ψ(P) = EP {EP(Y | X,D = 1)}

satisfies von Mises expansion with

φ(Z;P) = 1(D = 1)
P(D = 1 | X) {Y− EP(Y | X,D = 1)}+ EP(Y | X,D = 1)− ψ(P)

and
R2(P̄,P) =

∫ {
1
π̄(x) −

1
π(x)

}
{µ(x)− µ̄(x)}π(x)dP(x)

where π(x) = P(D = 1 | X = x) and π̄(x) = P̄(D = 1 | X = x), and similarly for
µ(x) = EP(Y | X = x,D = 1).
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Efficient Influence Function

■ We now have enough to characterize the greatest lower bound for generic
smooth parametric submodels.

■ A common choice of submodel for nonparametric P is, for some mean-zero
function h : Z → R,

pϵ(z) = dP(z){1+ ϵh(z)}

where ‖h‖∞ ≤ M <∞ and ϵ < 1/M so that pϵ(z) ≥ 0. For this submodel the score
function is ∂

∂ϵ log pϵ(z)
∣∣
ϵ=0 = ∂

∂ϵ log{1+ ϵh(z)}
∣∣
ϵ=0 = h(z).
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Efficient Influence Function

■ For previous submodel, the score is sϵ(z) = h(z) and by pathwise differentiability
we have

∂

∂ϵ
ψ (Pϵ)

∣∣∣∣
ϵ=0

=

∫
φ(z;P)h(z)dP(z).

Therefore over all CRLB at ϵ = 0 we have

sup
Pϵ

ψ′ (Pϵ)2

var {sϵ(Z)}
= sup

h

E{φ(Z;P)h(Z)}2
E {h(Z)2} ≤ E

{
φ(Z;P)2

}
= var{φ(Z)}

where the first equality follows by pathwise differentiability and the form of the
submodel, and the inequality by Cauchy-Schwarz.

■ Therefore var{φ(Z)} is nonparametric analog of CRLB! - we call φ the efficient
influence function.
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Deriving Influence Functions

■ There are at least 3 ways to derive IFs.
■ Most general: compute derivative ψ′ (Pϵ) and solve for φ
■ Often easier to pretend data are discrete and compute Gateaux derivative in
direction of point mass contamination

■ Kennedy Method: use chain/product rules w/ simple IFs as building blocks:
TRICK 1 Pretend the data are discrete.
TRICK 2 Treat IFs as derivatives, allowing use of differentiation rules. For example, let

IF : Ψ → L2(P)map functional ψ : P → R to its IF φ(z) ∈ L2(P) in a nonparametric
model. Then:

TRICK 2a (product rule) IF (ψ1ψ2) = IF (ψ1)ψ2 + ψ1IF (ψ2)

TRICK 2b (chain rule) IF(f(ψ)) = f′(ψ)IF(ψ)
TRICK 3 Use influence function building blocks, e.g.,

IF(E(Y | X = x)) = 1(X = x)
P(X = x){Y− E(Y | X = x)}
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Efficient Influence Function for ATE

Example
Let µ(x) = E(Y | X = x,D = 1), π(x) = P(D = 1 | X = x), and p(x) = P(X = x), and let
ψ = E{E(Y | X,D = 1)} denote the ATE. Then the influence function is given by

IF(ψ) = IF

{∑
x
µ(x)p(x)

}
=

∑
x
[IF{µ(x)}p(x) + µ(x)IF{p(x)}]

=
∑
x

1(X = x,D = 1)
p(1, x) {Y− µ(x)}p(x) + µ(x){1(x = X)− p(x)}

]

=
D
π(X){Y− µ(X)}+ µ(X)− ψ

where the first equality follows by Trick 1, the second by Trick 2a, the third by Trick 3,
and the fourth by rearranging.
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Application: Non-parametric
methods for doubly robust
estimation of continuous
treatments



Big Picture

■ Kennedy et al (2017) shows how we can apply the previous concepts for more
complex causal parameter like the ones with continuous treatments.

■ This paper develops a novel kernel smoothing approach with mild smoothness
assumptions on the effect curve allowing for doubly robust covariate adjustment.

■ Derives asymptotic properties and provides a data-driven procedure for
bandwidth selection.

■ Illustrates its perks via simulations and a study of the effect of nurse staffing on
hospital readmission penalties.

■ Empirical Application: Study whether nurse staffing (the treatment, measured in
nurse hours per patient day) affected hospitals’ risk of excess readmission
penalty (in the context of the Hospital re-admissions reduction program (2012)).

■ ⇒ Hospitals differ in many important ways that could be related to both nurse
staffing and excess re-admissions like size, location, teaching status, etc. To
make fair comparisons, we must adjust for hospital characteristics!
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Background

■ We are interested in continuous treatments such as dose, duration, or frequency
that arise often in observational studies.

■ Such treatments lead to effects that are described by dose-response curves rather
than scalars as in binary treatments.

■ There 2 methodological challenges in this setting:
1. How to discover underlying structure of dose-response curves without imposing a

prior shape restrictions.
2. How to adjust properly for high dimensional confounders.
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Literature

■ One of the approaches for estimating continuous treatment effects is based on
regression modeling.

▶ Needs correct specification of the outcome model
▶ Does not incorporate available information about the treatment mechanism
▶ Sensitive to the curse of dimensionality.

■ Another one is semiparametric doubly robust
▶ Rely on parametric models for the dose-response estimation.

■ Recent work extended semiparametric doubly robust methods to
non-parametric and high dimensional settings

■ This paper: New approach for causal dose-response that is DR without requiring
parametric assumptions and can incorporate general ML methods.
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Setup

■ i.i.d sample (Z1, . . . ,Zn) where Z = (L,A, Y) has support Z = (L ×A× Y)

■ L denotes a vector of covariates, A a continuous treatment and Y outcome of
interest

■ Let Ya potential outcome under treatment level a
■ Denote the distribution of Z by P, with density p(z) = p(y | l,a)p(a | I)p(l)
■ Denote mean outcome given covariates and treatment as
µ(l,a) = E(Y | L = l,A = a)

■ Let conditional treatment density given covariates π(a | l) = ∂P(A ⩽ a | L = l)/∂a
■ Let marginal treatment density ϖ(a) = ∂P(A ⩽ a)/∂a.
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Identification

■ Our goal is to estimate the effect curve θ(a) = E[Ya].

Assumption (Consistency)
A = a implies Y = Ya. No interference and no different versions of the treatment

Assumption (Positivity)
π(a | I) ⩾ πmin > 0 for all l ∈ L. Every subject has some chance of receiving treatment
level a, regardless of covariates.

Assumption (Ignorability)
E (Ya | L,A) = E (Ya | L). Treatment assignment is unrelated to potential outcomes within
strata of covariates.
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Identification

Previous assumptions are satisfied in RCTs, but in observational studies may be
violated and generally untestable.

Definition (Identification)
Under assumptions 1-3, the effect curve θ(a) can be identified with observed data as

θ(a) = E{µ(L,a)} =

∫
L
µ(l,a)dP(l)
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Doubly robust mapping

■ This paper derive doubly robust estimators for θ(a) without relying on parametrics
models.

■ Our goal is to find a function ξ(Z;π, µ) of the observed data Z and nuisance
functions (π, µ) such that

E{ξ(Z; π̄, µ̄) | A = a} = θ(a)

if either π̄ = π or µ̄ = µ (not necessarily both).
■ Given such a mapping, off-the-shelf non-parametric regression andmachine

learningmethods could be used to estimate θ(a) by regressing ξ(Z; π̂, µ̂) on
treatment A, based on estimates π̂ and µ̂.
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Doubly robust mapping

■ This mapping is related to the efficient influence function for a particular
parameter.

■ If E{ξ(Z; π̄, µ̄) | A = a} = θ(a) then it follows that E{ξ(Z; π̄, µ̄)} = ψ for

ψ =

∫
A

∫
L

µ(l,a)
expected outcome given cov. + treat.

ϖ(a)
marginal treat. density

dP(l)da.

■ The efficient influence function ϕ(Z;π, µ) will be doubly robust such that
E{ϕ(Z;π, µ)} = E{ξ(Z;π, µ)− ψ} = 0, so E{ξ(Z; π̄, µ̄)} = ψ if either π̄ = π or µ̄ = µ.
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Efficient Influence Function

■ The parameter ψ represents the average outcome under an intervention that
randomly assigns treatment based on the density ϖ.

■ The efficient influence function for ψ has not been given before under a
non-parametric model (i.e., suppose that the marginal density ϖ is unknown).

Theorem (Efficient Influence Function under Non-parametric model)
Under a non-parametric model, the efficient influence function for ψ is

ξ(Z;π, µ)− ψ +

∫
A

{
µ(L,a)−

∫
L
µ(l,a)dP(l)

}
ϖ(a)da

where ξ(Z;π, µ) = Y−µ(L,A)
π(A|L)

∫
L π(A | l)dP(l) +

∫
L µ(l,A)dP(l)
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Approach Proposed

■ Our goal is to derive a doubly robust mapping ξ(Z;π, µ) for which E{ξ(Z; π̄, µ̄) |
A = a} = θ(a), as long as either π̄ = π or µ̄ = µ, in a two-step procedure:
1. Estimate nuisance functions (π, µ) and obtain predicted values.
2. Construct pseudo-outcome ξ̂(Z; π̂, µ̂) and regress on treatment variable A.
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Estimator using Local Linear Regression

■ For step 2, one can propose an estimator that uses kernel smoothing such as
Local Linear Kernel Regression.

■ Let θ̂h(a) = gha(a)Tβ̂h(a), where gha(t) = (1, (t− a)/h)T and

β̂h(a) = argmin
β∈R2

Pn

[
Kha(A)

{
ξ̂(Z; π̂, µ̂)− gha(A)Tβ

}2]
for Kha(t) = h−1K{(t− a)/h} with K a standard kernel function (e.g. a symmetric
probability density) and h a scalar bandwidth parameter.
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