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Introduction



Introduction

■ This presentation is based on the paper by Chernuzhukov et al. (2018, EJ).
■ The DML method is nothing more than a practical recipe (framework) that
incorporates ideas from the semiparametric econometrics literature and
prediction methods from the modernmachine learning literature to provide
methods that are rigorous for statistical inference of causal treatment effects.
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Why use ML for Causal Inference?

■ When we estimate causal effect in observational studies we often rely on the
selection on observables-type assumption: Y(1), Y(0) ⊥ D | X

■ Typically we make strong assumptions about the function form of our model
when we condition on confounders.

■ Under misspecification of our functional form, we will end up with biased
estimates of treatment effect even if we believe that we are in the absence of
unmeasured confounding.

■ Machine learning (ML) provides a systematic way to learn the form of the
conditional expectation function from the data.

■ However, we cannot apply these methods right away, and we should know under
what conditions they are useful for causal inference problems!
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Big Picture

■ Provides a general framework to estimate treatment effects using ML methods.
■ In particular, we can use any (preferably n1/4-consistent) ML estimator with this
approach.

Remark (Main Goal)
Estimate and construct confidence intervals for a low-dimensional parameter (θ0) in the
presence of high-dimensional nuisance parameters (η0), where the latter may be
estimated with ML methods, such as random forests, boosted trees, lasso, ridge, deep and
standard neural nets, xgboost, etc.
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Partially Linear Model as motivating example

■ ML methods are remarkably good at prediction tasks but not for causal
inference.

■ However, via Orthogonalization and Sample Splitting we can construct high quality
point and interval estimates of causal parameters.

■ Let’s consider the canonical example:

Y = Dθ0 + g0(Z) + U, E[U | Z,D] = 0

where Y is the outcome variable, D is treatment variable, Z is a high-dimensional
vector of confounders and θ0 is the target parameter of interest.

■ Z are confounders in the sense that

D = c+m0(Z) + V, E[V | Z] = 0

wherem0 ̸= 0, as is typically the case in observational studies.
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Comparing approaches: Naive and Orthogonal

■ Naive:
▶ Predict Y using D and Z and obtain

Dθ̂0 + ĝ0(Z)

▶ For example, estimate by alternating minimization: given initial guess η̂0, run xgboost
of Y− Dθ̂0 on Z to fit ĝ0(Z) and the OLS on Y− ĝ0(Z) on D to get updated θ̂0; Repeat
until convergence.

■ Orthogonal:
▶ Predict Y and D using Z by

Ê[Y | Z] and Ê[D | Z],

obtained using the xgboost or other well performing ML algorithm.
▶ Residualize Ŵ = Y− Ê[Y | Z] and V̂ = D− Ê[D | Z]
▶ Regress Ŵ on V̂ to get θ̌0 (FWL on steroids!).
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Comparing results
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Key I: Neyman Orthogonality



Key Ingredients I

■ DML estimation and inference are built on amethod-of-moments estimator for a
low-dimensional target parameter θ0, using the empirical analog of the moment
condition.

Eψ (W; θ0, η0) = 0
where ψ is the score function, W denotes a data vector, and η denotes nuisances
parameters with true value η0

■ The first ingredient is using a score function ψ(·) such that

M(θ, η) = E[ψ(W; θ, η)]

identifies θ0 when η = η0

■ That is, M (θ, η0) = 0 if and only if θ = θ0

■ and the Neyman orthogonality condition is satisfied:

∂ηM (θ0, η)|η=η0
= 0.
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Neyman Orthogonality

Definition (Gateux Derivative)
The derivative ∂η denotes the pathwise (Gateaux) derivative operator. Formally it is
defined via usual derivatives taken in various directions: Given any ”admissible”
direction ∆ = η − η0 and scalar deviation amount t, we have that

∂ηM(θ, η)[∆] := ∂tM(θ, η + t∆)|t=0 .

The statement
∂ηM (θ0, η0) = 0

means that ∂ηM (θ0, η0) [∆] = 0 for any admissible direction ∆. The direction ∆ is
admissible if η0 + t∆ is in the parameter space for η for all small values of t.

Intuition: Heuristically, the conditions says that the moment condition remains valid
under local mistakes in the nuisance function.
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Neyman Orthogonality

■ The two strategies rely on different moment conditions for identifying and
estimating θ0:
1. Naive:= ψ (W, θ0, η) = (Y− Dθ0 − g0(Z))D

with η = g(Z), η0 = g0(Z)
2. Orthogonal := ψ (W, θ0, η0) = ((Y− E[Y | Z])− (D− E[D | Z])θ0) (D− E[D | Z])

with η = (ℓ(Z),m(Z)), η0 = (ℓ0(Z),m0(Z)) = (E[Y | Z],E[D | Z])

■ The Neyman Orthogonality condition does hold for the score Orthogonal and
fails to hold for the score Naive.
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DML Estimator

Consider estimation based on (2)

θ̌0 =

(
1
n

n∑
i=1

V̂2i

)−1
1
n

N∑
i=1

V̂iŴi

where V̂ = D− m̂0(Z), Ŵ = Y− ℓ̂0(Z),

Under mild conditions, can write

√
n
(
θ̌0 − θ0

)
=

(
1
n

n∑
i=1

V2i

)−1
1√
n

n∑
i=1

ViUi︸ ︷︷ ︸
:=a∗

+

(
1
n

n∑
i=1

V2i

)−1
1√
n

n∑
i=1

(m0 (Zi)− m̂0 (Zi))
(
ℓ0 (Zi)− ℓ̂0 (Zi)

)
︸ ︷︷ ︸

:=b∗

+ op(1) 11



Converging Properties

■ a∗ ⇝ N(0,Σ) under standard conditions
■ b∗ now depends on product of estimation errors in both nuisance functions
■ b∗ will look like

√
nn−(φm+φℓ) where n−φm and n−φℓ are respectively appropriate

convergence rates of estimators form(z) and ℓ(z)
■ o

(
n−1/4) is often an attainable rate for estimatingm(z) and ℓ(z)

Remark
A key input is the use of high-quality machine learning estimators of the nuisance
parameters. A sufficient condition in the examples given includes the requirement

n1/4 ∥η̂ − η0∥L2 ≈ 0

■ Fortunately, there are performance guarantees for most of these ML methods
that make it possible to satisfy the conditions stated above.
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Key II: Sample Splitting



Key Ingredients II

■ The second key ingredient is to use a form of sample splitting at the stage of
producing the estimator of the main parameter θ0, which allows to avoid biases
arising from overfitting.

■ Technically, we rely on sample splitting to get the third term of the DML estimator
to be op(1) with only the rate restriction of o(n−1/4) on the performance of the
ML algorithm.

■ This eliminates conditions on the entropic complexity of the realization of ML
estimators (very difficult to check in practice).
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Sample Splitting

■ In the expansion
√
n
(
θ̌0 − θ0

)
= a∗ + b∗ + op(1) the term op(1) contains terms like(

1
n

n∑
i=1

V2i

)−1
1√
n

n∑
i=1

Ui (m0 (Zi)− m̂ (Zi))

■ With sample splitting, easy to control and claim op(1).
■ Without sample splitting, it is difficult to control and claim op(1).

Remark
Without sample splitting, need maximal inequalities to control

sup
m∈Mn

∣∣∣∣∣ 1√n

n∑
i=1

Ui (m0 (Zi)−m (Zi))
∣∣∣∣∣

where Mn ∋ m̂ with probability going to 1, and need to control the entropy of Mn, which
typically grows in modern high-dimensional applications. In particular, the assumption
that Mn is P -Donsker used in semiparametric literature does not apply. 14
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General Results: Neyman Orthogonality

Moment conditions model:

E
[
ψj (W, θ0, η0)

]
= 0, j = 1, . . . ,dθ

■ ψ = (ψ1, . . . , ψdθ
)′ is a vector of known score functions

■ W is a random element; we observe random sample (Wi)
N
i=1 from the distribution

of W
■ θ0 is the low-dimensional parameter of interest
■ η0 is the true value of the nuisance parameter η ∈ T for some convex set T
equipped with a norm ∥ · ∥e (can be a function or vector of functions)
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General Results: Neyman Orthogonality

Key orthogonality condition: ψ = (ψ1, . . . , ψdθ
)′ obeys the orthogonality condition

with respect to T ⊂ T if the Gateaux derivativemap

Dr,j [η − η0] := ∂r
{

EP
[
ψj (W, θ0, η0 + r (η − η0))

]}

■ exists for all r ∈ [0,1), η ∈ T , and j = 1, . . . ,dθ

■ vanishes at r = 0 : For all η ∈ T and j = 1, . . . ,dθ,

∂ηEPψj (W, θ0, η)
∣∣
η=η0

[η − η0] := D0,j [η − η0] = 0
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General Results: Sample Splitting

Results will make use of sample splitting:

■ {1, . . . ,N} = set of all observation names;
■ I =main sample = set of observation numbers, of size n, is used to estimate θ0
■ Ic = auxilliary sample = set of observations, of size πn = N− n, is used to
estimate η0;

■ I and Ic form a random partition of the set {1, . . . ,N}
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Main Theoretical Result

Under regularity conditions (See paper), let Double ML estimator

θ̌0 = θ̌0 (I, Ic)

be such that ∥∥∥∥∥1n∑
i∈I

ψ
(
W, θ̌0, η̂0

)∥∥∥∥∥ ⩽ ϵn, ϵn = o
(
δnn−1/2

)
Theorem
θ̌0 obeys

√
nΣ−1/2

0
(
θ̌0 − θ0

)
=

1√
n
∑
i∈I

ψ̄ (Wi) + OP (δn)⇝ N(0, I),

uniformly over P ∈ Pn, where ψ̄(·) := −Σ
−1/2
0 J−1

0 ψ (·, θ0, η0) and
Σ0 := J−1

0 EP
[
ψ2 (W, θ0, η0)

] (
J−1
0

)′
and J0 := ∂θ′ {EP [ψ (W, θ, η0)]}|θ=θ0

.
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Main Theoretical Results

Corollary (2-fold cross-validation)
Can do a random 2-way split with π = 1, obtain estimates θ̌0 (I, Ic) and θ̌0 (Ic, I) and
average them

θ̌0 =
1
2 θ̌0 (I, I

c) +
1
2 θ̌0 (I

c, I)

to gain full efficiency.

Corollary (k-fold cross-validation)
Can do also a random K-way split (I1, . . . , IK) of {1, . . . ,N}, so that π = (K− 1), obtain
estimates θ̌0

(
Ik, Ick

)
, for k = 1, . . . , K, and average them

θ̌ =
1
K

K∑
k=1

θ̌0 (Ik, Ick)

to gain full efficiency.
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The DML inference methood

1. Inputs: Provide the data frame (Wi)
n
i=1, the Neyman orthogonal score/moment

function ψ(W, θ, η) that identifies the statistical parameter of interest, and the
name and model for ML estimation method(s) for η.

2. Train ML Predictors on Folds: Take a K-fold random partition (Ik)Kk=1 of
observation indices {1, . . . ,n} such that the size of each fold is about the same.
For each k ∈ {1, . . . , K}, construct a high-quality machine learning estimator η̂[k]
that depends only on a subset of data (Xi)i/∈Ik that excludes the k-th fold.

3. Estimate Moments: Letting k(i) = {k : i ∈ Ik}, construct the moment equation
estimate

M̂(θ, η̂) =
1
n

n∑
i=1

ψ
(
Wi; θ, η̂[k(i)]

)
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The DML inference methood

4. Compute the Estimator: Set the estimator θ̂ as the solution to the equation.

M̂(θ̂, η̂) = 0.

5. Estimate Its Variance: Estimate the asymptotic variance of θ̂ by

V̂ =
1
n

n∑
i=1

[
φ̂ (Wi) φ̂ (Wi)

′]
− 1

n

n∑
i=1

[φ̂ (Wi)]
1
n

n∑
i=1

[φ̂ (Wi)]
′
,

where
φ̂ (Wi) = −Ĵ−1

0 ψ
(
Wi; θ̂, η̂[k(i)]

)
and

Ĵ0 := ∂θ
1
n

n∑
i=1

ψ
(
Wi; θ̂, η̂[k(i)]

)
.
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The DML inference method

6. Confidence Intervals: Form an approximate (1− α)% confidence interval for any
functional ℓ′θ0, where ℓ is a vector of constants, as[

ℓ′θ̂ ± c
√
ℓ′V̂ℓ/n

]
where c is the (1− α/2) quantile of N(0,1).
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Application: Debiased
machine learning of
conditional average
treatment effects and other
causal functions



Big Picture

■ Semenova & Chernozhukov (2021, EJ) provides estimation and inferencemethods
on a nonparametric function g(x) that summarizes
heterogeneous/causal/structural effects conditional on a small set of covariates X.

■ Represent this structural function as a conditional expectation of an unbiased
signal that depends on a nuisance parameter estimated by ML methods.

■ Other papers study a specific feature of CATE. This paper operates in a classical
observational setting, with many potential controls, and targets the true CATE
function.

■ Procedure:
1. Adjust the signal to make it Neyman-orthogonal with respect to the first-stage

regularization bias.
2. Project the signal onto a set of basis functions to get the best linear predictor of the

structural function.
3. Simultaneous inference on all parameters of the best linear predictor by Gaussian

bootstrap.
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Setup

■ Consider a function g(x) which can be represented as a conditional expectation
function

g(x) = E [Y (η0) | X = x]

where Y (η0) is refer as signal, and depends on a nuisance function η0(z) of a
control vector Z.

■ Examples of signals include the Conditional Average Treatment Effect (CATE),
Continuous Treatment Effects (CTEs), etc.

■ Examples of nuisance functions include the propensity score, the conditional
density, and the regression function, among others.

■ Keep in mind: dim(Z) is high; dim(X) is low.
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Orthogonality Property

■ Focus on signals Y (η0) that have the orthogonality property.
■ Formally, we require the pathwise derivative of the conditional expectation to be

zero conditional on X :

∂rE [Y (η0 + r (η − η0)) | X = x]|r=0 = 0, for all x and η

■ If the signal Y(η) is orthogonal, its plug-in estimate Y(η̂) is insensitive to bias in the
estimation of η̂ (i.e., regularization bias), which results from applying ML
methods in high dimensions.

■ Under mild conditions, Y(η̂) delivers a high-quality estimator of the target
function g(x).
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Orthogonality Property for CTEs

■ Let X ∈ R be a one-dimensional continuous treatment.
■ Let Yx be the potential outcome corresponding to the subject’s response after
receiving x units of treatment

■ V = (X, Z, Y) consists of the treatment X, the control vector Z, and the observed
outcome Y = YX.

■ If potential outcomes {Yx, x ∈ R} are independent of treatment X conditional on
controls Z, the average potential outcome is identified as

E [Yx] = Eµ0(x, Z) =
∫
µ0(x, z)dPZ(z),

where µ0(x, z) = E[Y | X = x, Z = z] is the regression function of the observed
outcome.

■ Since Z is high dimensional, it is necessary to estimate the regression function
µ0(x, z) with some regularized technique to achieve convergence.
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Naive approach: problematic?

■ To estimate E [Yx] we can consider the sample analog

g̃(x) =
∫
µ̂(x, z)dP̂Z(z),

where µ̂(x, z) is a regularized estimate of µ0(x, Z), and P̂Z(z) the empirical analog of
PZ

■ Problem: This approach results in a biased estimate, and the bias of estimation
error µ̂(x, Z)− µ0(x, Z) does not vanish faster than N1/2

■ The plug-in estimator inherits this first-order bias because the moment equation
is not orthogonal to perturbations of µ

■ This bias implies that the plug-in estimator g̃(x) will not converge at the optimal
rate.
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First stage: Doubly Robust Signal

■ Let g(x) = E[Yx].
■ We choose Y(η) to be a doubly robust signal in the sense of Kennedy et. al. (2017)

Y(η) := Y− µ(X, Z)
s(X | Z) w(X) +

∫
µ(X, z)dPZ(z)

■ Nuisance parameter

η0(x, z) =
{

s0(x | z) , µ0(x, z) , w0(x)
}

consist in the regression function, conditional density of X | Z, and marginal
treatment density.
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First stage: Doubly Robust Signal

■ The previous procedure is more costly because the nuisance parameter includes
two more functions: s0(x | z), and w0(x)

■ However the signal is conditional orthogonal with respect to each nuisance
function in η0(x, z)

E

 −
∫
z∈Z (µ(X, z)− µ0(X, z))dPZ(z) +

∫
z∈Z (µ(x, z)− µ0(x, z))dPZ(z)

µ0(X,Z)−Y
s20(X|Z)

(s(X | Z)− s0(X | Z)) | X = x
Y−µ0(X,Z)
s0(X|Z) (W(X)− w0(X))

 = 0

■ This guarantees the bias of the estimation error η̂(x, Z)− η0(x, Z) does not create
first-order bias in the estimated signal Y(η̂) and affects only its higher-order bias.

■ Therefore, the estimate of the target function based on Y(η̂) is high quality under
plausible conditions.
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Second stage: Linear projection onto basis function

■ Consider a linear projection of an orthogonal signal Y(η) onto a vector of basis
functions p(X),

β := arg min
b∈Rd

E (Y(η)− p(X)′b)2 .

■ The choice of basis functions depends on the desired interpretation of the linear
approximation.

Example

Consider partitioning the support of X into d mutually exclusive groups {Gk}
d
k=1. Setting

pk(x) = 1 {x ∈ Gk} , k ∈ {1,2, . . . ,d}

implies that p(x)′β0 is a group average treatment effect for group k such that x ∈ Gk.

■ Our inference will target this parameter, allowing the number of groups to
increase at some rate.
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Example: CTE

■ Let X ∈ R be a continuous treatment variable, Z be a vector of the controls, Yx stand
for the potential outcomes corresponding to the subject’s response after
receiving x units of treatment. Y = YX be the observed outcome.

■ For a given value x, the target function is the average potential outcome

g(x) = E [Yx]

■ Unconfoundedness: Suppose all of the potential outcomes {Yx, x ∈ R} are
independent of X | Z

{Yx, x ∈ R} ⊥ X | Z.
■ Then g(x) is identified as

g(x) = Eµ0(x, Z)
■ Doubly Robust signal is conditionally orthogonal with respect to the nuisance
parameter consisting of the generalized propensity score, regression function of Y
on X, Z, and themarginal treatment density.
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Example: CATE

■ Let Y1 and Y0 be the potential outcomes
■ Let D = 1 be a dummy for whether a subject is treated.
■ The object of interest is the CATE

g(x) := E [Y1 − Y0 | X = x]

■ Unconfoundedness: Y1, Y0 ⊥ D | Z
■ One can define a orthogonal signal with respect to the nuisance parameter
η0(z) := {s0(z), µ0(1, z), µ0(0, z)} such that

Y(η) := µ(1, Z)− µ(0, Z) + D[Y− µ(1, Z)]
s(Z) − (1− D)[Y− µ(0, Z)]

1− s(Z)
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Example: Conditional Average Partial Derivative

■ Let D ∈ R be a continuous treatment variable, Z be a vector of the controls, Yd stand
for the potential outcomes after receiving d units of treatment and X be a
subvector of controls Z.

■ The target function is the average partial derivative conditional on a covariate
vector X

g(x) = ∂dE
[
YD | X = x

]
.

■ Unconfoundedness:
{
Yd,d ∈ R

}
⊥ D | Z

■ g(x) is identified as

g(x) = E[∂d µ0(D, Z)
E[Y | D = d, Z = z]

| X = x]

■ Using the following signal orthogonal with respect to the nuisance parameter
η0(d, z) = {µ0(d, z), s0(d | z)}:

Y(η) := −∂d log s(D | Z)[Y− µ(D, Z)] + ∂dµ(D, Z) 33



Orthogonal estimator: Two-stages

1. Construct an estimate η̂ of the nuisance parameter η̂0, using an ML model
capable of dealing with the high-dimensional covariate vector Z.

2. Construct Ŷi := Yi(η̂) and run OLS of Ŷi on p(Xi).

Definition (Cross-fitting)
(1) For a random sample of size N, denote a K-fold random partition of the sample
indices [N] = {1,2, . . . ,N} by (Jk)Kk=1, where K is the number of partitions, and the
sample size of each fold is n = N/K. For each k ∈ [K] = {1,2, . . . , K} define
Jck = {1,2, . . . ,N}\Jk.
(2) For each k ∈ [K], construct an estimator η̂k = η̂

(
Vi∈Jck

)
of the nuisance parameter η0

by using only the data
{
Vj : j ∈ Jck

}
. For any observation i ∈ Jk, define Ŷi := Yi (η̂k).

Definition (Orthogonal Estimator)

Given
(
Ŷi
)N
i=1

, define β̂ :=
(
1
N
∑N

i=1 p (Xi)p (Xi)
′
)−1 1

N
∑N

i=1 p (Xi) Ŷi
34
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