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Abstract

Triple Differences (DDD) designs are widely used in empirical work to relax parallel
trends assumptions in Difference-in-Differences (DiD) settings. This paper shows that com-
mon DDD implementations—such as taking the difference between two DiDs or applying
three-way fixed effects regressions—are generally invalid when identification requires condi-
tioning on covariates. In staggered adoption settings, the common DiD practice of pooling
all not-yet-treated units as a comparison group introduces additional bias, even when co-
variates are not required for identification. These insights challenge conventional empirical
strategies and underscore the need for estimators tailored specifically to DDD structures. We
develop regression adjustment, inverse probability weighting, and doubly robust estimators
that remain valid under covariate-adjusted DDD parallel trends. For staggered designs, we
show how to correctly leverage multiple comparison groups to get more informative inference.
Simulations highlight substantial bias reductions and precision gains relative to standard ap-
proaches, offering a new framework for credible DDD estimation in empirical research.

JEL: C10; C14; C21; C23.
Keywords: Triple Differences; Difference-in-Differences; Difference-in-Difference-in-Differences;
Parallel Trends; Doubly Robustness; Staggered Adoption.

∗We thank participants from the 2023 SEA Conference, 2024 Midwest Econometrics Group Conference, 2025
Georgia Econometrics Workshop, and participants of the “Difference-in-Differences” Workshops from Causal So-
lutions in 2022 and 2023. This paper builds on and supersedes the material used for the 2022 Causal Solutions
YouTube Lecture available here.

†Department of Economics, Emory University. Email: marcelo.ortiz@emory.edu
‡Department of Economics, Emory University. Email: pedro.santanna@emory.edu

1

https://www.youtube.com/watch?v=LTuBEwASEJQ&t=3s


1 Introduction
Over the last few years, we have seen a big Difference-in-Differences (DiD) “methodological revo-
lution” with multiple DiD estimators being proposed to address the interpretability shortcomings
associated with using more traditional two-way fixed-effects specifications in the presence of treat-
ment effect heterogeneity.1 Although these modern DiD estimators can capture richer notions
of heterogeneity, in practice, they rely on parallel trends (PT) assumptions, and an important
concern relates to how plausible these PT assumptions are. When such PT assumptions are not
accurate approximations of reality, one may doubt the conclusions of DiD studies (Rambachan
and Roth, 2023; Chiu, Lan, Liu and Xu, 2025).

In some setups, however, it is possible to naturally relax such DiD-type PT assumptions and
retain the simplicity and empirical appeal of DiD-type analysis. This is particularly the case when
a unit needs to fulfill two criteria to be treated, e.g., it belongs to (i) a group (e.g., a state) in which
the treatment is already enabled, and (ii) a partition of the population that qualifies (or is eligible)
for treatment (e.g., women). Such setups are often referred to as Triple Differences (DDD), and
allow for group-specific and partition-specific violations of parallel trends. Since its introduction by
Gruber (1994), DDD has become very popular among empirical researchers—see Olden and Møen
(2022) for documentation.2 Despite its empirical popularity, little attention has been devoted to
better understanding DDD setups with covariates, multiple periods, and/or staggered treatment
adoption.

This article aims to improve our understanding of Triple Difference (DDD) designs. We study
identification, estimation, and inference procedures for DDD when covariates may be important
for the reliability of the identification assumptions, multiple periods are available, and treatment
adoption is potentially staggered over time. We tackle the DDD problem using causal inference first
principles and uncover surprising results that challenge some conventional wisdom and common
practices.

For instance, although DDD estimators can be understood as the difference between two DiD
estimators in setups with two periods and no covariates (Olden and Møen, 2022), our results
highlight that this is no longer the case when covariates are required to justify the plausibility of
a DDD-type parallel trends assumption. As we illustrate via simulations, erroneously proceeding
as if DDD was just the difference between 2 DiD estimators can lead to severely biased results.
Such bias arises because this naive DDD strategy fails to integrate the covariate distribution over
the correct reference group—the treated group. We show that it is straightforward to avoid these
problems and propose regression adjustment, inverse probability weighting, and doubly robust
DDD estimators. Our doubly robust DDD estimator builds on the efficient influence function

1 For an overview and a practitioner’s guide, see Roth, Sant’Anna, Bilinski and Poe (2023) and Baker, Callaway,
Cunningham, Goodman-Bacon and Sant’Anna (2025).

2 Additional examples of papers using DDD strategy include Walker (2013), Garthwaite, Gross and Notowidigdo
(2014), Antwi, Moriya and Simon (2013), and Hansen and Wingender (2023).
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for the two-period DDD setup, allowing one to use flexible (potentially machine-learning-based)
estimators for the nuisance functions. We also show that if one wants to cast DDD in terms of DiD,
one would need three—and not two—DiD terms. Each of these DiD terms compares effectively
treated units with a different type of untreated units, e.g., units in a treated state but ineligible for
treatment, units that are eligible but are in an untreated state, or ineligible units in an untreated
state.

In setups with staggered treatment adoption, our results once again challenge the interpretation
of DDD as the difference between two DiDs. In DiD with staggered treatment adoptions, it is now
common to pool all not-yet-treated units at a time period and use that aggregate set of units
as a valid comparison group.3 Thus, one may think that a similar strategy should work with
DDD. However, our results highlight that this is generally not the case and that pooling all not-
yet-treated units and proceeding as in staggered DiD procedures can lead to biased estimators
for average treatment effects parameters, even when covariates do not play an important role.
This arises because the proportion of units eligible for treatment may change across groups that
enable treatment over time. As DDD allows for group-specific and partition-specific violations
of DiD-type PT, these differential trends do not average out when pooling all not-yet-treated
units, leading to potentially misleading estimates. We propose DDD estimators that bypass this
drawback by using any specific not-yet-treated unit as a comparison group (e.g., the set of units in
groups that never enabled treatment). As one can potentially use different not-yet-treated cohorts
as comparison groups, we also discuss combining these to form more precise estimators. Our
proposed DDD estimator that aggregates across different comparison groups can be understood
as a two-step Generalized Method of Moments (GMM) procedure based on recentered influence
functions. Importantly, our staggered DDD procedures can flexibly accommodate covariates using
regression adjustment, inverse probability weighting, or doubly robust methods and can also be
used to form event-study estimators that highlight how average treatment effects evolve with
elapsed treatment time.

Related literature: This article contributes to the rapidly expanding literature on DiD-
related methods. In particular, we contribute to the scarce literature on DDD procedures. Our
paper is related to Olden and Møen (2022), though we cover substantially more general DDD
setups with (a) multiple periods, (b) staggered treatment adoption, and (c) covariates potentially
playing an important role for the plausibility of the identification assumptions. In this sense, our
paper can be understood as the DDD analog of Callaway and Sant’Anna (2021). However, and in
sharp contrast with Callaway and Sant’Anna (2021), our DDD procedures cannot pool all not-yet-
treated units as an aggregated comparison group, highlighting some interesting differences between
staggered DiD and DDD designs. Our paper is also related to Strezhnev (2023), who introduced
a decomposition of the DDD estimators based on three-way fixed effects specifications, showing

3 See, e.g., Callaway and Sant’Anna (2021); De Chaisemartin and d’Haultfoeuille (2020); Wooldridge (2021);
Borusyak, Jaravel and Spiess (2024).
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when and why it fails to recover an easy-to-interpret causal parameter of interest when treatment
effects are heterogeneous. To some extent, Strezhnev (2023) can be understood as the analog of
Goodman-Bacon (2021) to DDD setups, while our paper is more closely related to Callaway and
Sant’Anna (2021). As such, our results complement Strezhnev (2023), and as our estimators do
not leverage a rigid three-way fixed effect specification, they avoid the issues highlighted in that
study. Our paper is also related to Słoczyński (2022, 2024) in the sense that our proposed tools
avoid issues related to potentially misleading weights related to model misspecifications.

In this paper, we use the term triple differences to qualify designs under which units need
to satisfy two criteria to be (effectively) treated. However, we note that sometimes, different
researchers use the term triple differences more broadly, for instance, when they are interested
in analyzing treatment effect heterogeneity across subgroups. In such cases, it is important to
highlight that the underlying identification assumptions and the parameters of interest would
differ from those we study in this paper; see Caron (2025) for a recent example. Those procedures
should be understood as a complement to the ones we discuss in this paper, as they can be used
to answer different questions of interest.

Organization of the paper: The rest of the paper is organized as follows. In the next
section, we present our framework. In Section 3, we challenge some standard empirical practices
for DDD analyses in terms of interpreting it as a simple extension of DiD analysis, and we also
highlight some important practical takeaway messages from our main results. Section 4 introduces
our formal identification, estimation, and inference results. Section 5 presents a Monte Carlo study
to demonstrate the finite sample properties of our estimator with conclusions drawn in Section 6.
Detailed mathematical proofs and additional results can be found in the Supplemental Appendix.

2 Framework
We start our analysis by discussing the specifics of our DDD research design, including potential
outcomes, parameters of interest, and identification assumptions. We consider a setup with T time
periods, t “ 1, 2, . . . , T . Units are indexed by i, with i “ 1, 2, . . . , n. We focus on setups where n
is much larger than T , as our inference procedures are asymptotically justified using the “fixed-T ,
large-n” panel data framework.

Each unit may be exposed to a binary treatment in any time period t ą 1. Treatment is an
absorbing state such that once a unit is treated, it remains treated for the remainder of the panel.
Each unit i belongs to a group (e.g., a state or a country) that enables treatment for the first
time in period g ą 1. Let Si P S Ď t2, ..., T u Y t8u be a variable that indicates the first time the
policy/treatment was enabled, with the notion that S “ 8 if the policy is not enabled by t “ T . In
addition, each unit belongs to a population partition that qualifies (or is eligible) for the treatment
or not (e.g., being a woman, or an indicator for specific crops). We denote this variable by Qi with
Qi “ 1 if unit i (eventually) qualifies for the treatment and Qi “ 0 otherwise. For simplicity, we
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assume that this population partition that eventually qualifies for treatment is time-invariant.
In our DDD setup, a unit i is treated in period t if t ě Si and Qi “ 1, i.e., if it belongs to a

group that has already enabled treatment by period t (i.e., t ě Si) and it qualifies for treatment
(i.e., Qi “ 1). With this notation that makes it clear that a unit i is treated if it satisfies two
criteria, let Di,t “ 1tt ě Si, Qi “ 1u be an indicator for whether unit i receives treatment in period
t, and let Gi “ mintt : Di,t “ 1u be the earliest period at which unit i has received treatment.
If i is never treated during the sample, then Gi “ 8. Here, we have that Gi “ Si if Qi “ 1 and
Gi “ 8 if Qi “ 0.4 Let G denote the support of Gi and Gtrt “ Gzt8u. We assume that a group of
“never-enabled” units always exists, i.e., Si “ 8 for some units. In an application where all units
belong to a group that eventually enables treatment, we remove all that data from all units from
the time the last cohort enabled treatment onwards, i.e., we drop all observations from periods
t ą maxSi, and retain the remaining data as the “effective” data to be used in our analysis, where
the last-to-be-eligible group becomes the “never-eligible” group.5 Finally, we also assume that a
vector of pre-treatment covariates Xi, whose support is denoted by X Ď Rd is available.

Regarding potential outcomes, we adopt the potential outcome framework of Robins (1986)
with potential outcomes indexed by treatment sequences. Let 0s and 1s be s-dimensional vectors
of zeros and ones, respectively, and denote the potential outcome for unit i at time t if unit i is
first treated at time g by Yi,tp0g´1,1T´g`1q, and denote by Yi,tp0T q the outcome if untreated by
time t “ T . As we focus our attention on staggered treatment adoptions, we can simplify notation
and index potential outcomes by the time treatment begins, g: Yi,tpgq “ Yi,tp0g´1,1T´g`1q and use
Yi,tp8q “ Yi,tp0T q to denote never-treated potential outcomes. In practice, though, we observe,

Yi,t “
ÿ

gPG
1tGi “ guYi,tpgq, (2.1)

where 1tAu represents the indicator function, which equals one if A is true and zero otherwise.
Additionally, we assume the observation of a random sample of pYt“1, . . . , Yt“T , X

1, G, S,Qq1.

Assumption S (Random Sampling). tpYi,t“1, . . . , Yi,t“T , X
1
i, Gi, Si, Qiq

1uni“1 is a random sample
from pYt“1, . . . , Yt“T , X

1, G, S,Qq1.

2.1 Parameters of interest

In this paper, we are interested in better understanding how average treatment effects vary across
periods and different groups defined by treatment starting period. More specifically, we want to
make inferences on functionals of the group-time average treatment effects, ATT pg, tq’s, defined

4 Note that when all units are eligible for treatment, we have Gi “ Si, getting us back to a (staggered) DiD setup;
see, e.g., Callaway and Sant’Anna (2021).

5 If needed, we also update the notion of support of all variables to reflect this change. In particular, T here denotes
the number of available periods in the subset of the data that we will use in our analysis.
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as

ATT pg, tq ” ErYi,tpgq ´ Yi,tp8q|Gi “ gs “ ErYi,tpgq ´ Yi,tp8q|Si “ g,Qi “ 1s, (2.2)

By exploring that in our context Gi “ g if and only if Si “ g and Qi “ 1, we have that ATT pg, tq “

ErYi,tpgq´Yi,tp8q|Si “ g,Qi “ 1s. Note that ATT pg, tq captures how the average treatment effects
evolve over time for each treatment group g (Callaway and Sant’Anna, 2021). As such, one can use
ATT pg, tq to construct group-g-specific event studies by analyzing how average treatment effects
vary with elapsed treatment time e “ t ´ g.

In some setups with multiple groups g, researchers may want to summarize over the many
ATT pg, tq’s into a more aggregate parameter. A natural summary parameter that still allows one
to understand treatment effect dynamics with respect to elapsed treatment time is the aggregated
event study parameter ESpeq, defined as

ESpeq ” E
“

ATT pG,G ` eq
ˇ

ˇG ` e P r2, T s
‰

“
ÿ

gPGtrt

PpG “ g|G ` e P r2, T sqATT pg, g ` eq. (2.3)

One may also want to aggregate the event study coefficients further to recover a scalar summary
measure. Let E denote the support of post-treatment event time E “ t ´ G, t ě G, and let NE

denote its cardinality. Then,

ESavg ”
1

NE

ÿ

ePE
ESpeq, (2.4)

provides a simple average of all post-treatment event study coefficients. Many other summary
parameters are possible; see Callaway and Sant’Anna (2021) for discussions of several alternatives.

2.2 Identification assumptions

To identify the ATT pg, tq’s and their functionals ESpeq and ESavg, we impose the following as-
sumptions.

Assumption SO (Strong Overlap). For every pg, qq P Sˆt0, 1u and for some ϵ ą 0, PrS “ g,Q “

q|Xs ą ϵ with probability one.

Assumption SO is an overlap condition that ensures that for any value of X, there are units with
any combination pg, qq P S that have comparable X values. Heuristically, this condition guarantees
that we cannot perfectly predict which pg, qq-partition a unit belongs to using information from
X. This assumption also rules out irregular identification (Khan and Tamer, 2010).6

We also impose the following no-anticipation assumptions.

Assumption NA (No-Anticipation). For every g P Gtrt, and every pre-treatment period t ă g,
ErYi,tpgq|S “ g,Q “ 1, Xs “ ErYi,tp8q|S “ g,Q “ 1, Xs with probability one.
6 As our focus is on ATT pg, tq-type parameters, it is possible to relax Assumption SO to hold only over X in the

support of the covariates among the (eventually) treated units. To simplify the discussion, we abstract from these
subtle points.
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Assumption NA rules out anticipatory effects among treated units as in, e.g., Abbring and
van den Berg (2003), Callaway and Sant’Anna (2021), and Sun and Abraham (2021). This as-
sumption is important as it allows us to consider observations in pre-treatment periods t ă g as
effectively untreated. If units are expected to anticipate some treatments—for example, if treat-
ment is announced in advance—it is important to adjust the definition of the treatment date to
account for it; see Malani and Reif (2015) for a discussion.

Next, we impose our final identification assumption that restricts the evolution of average
untreated potential outcomes across groups.

Assumption DDD-CPT (DDD-Conditional Parallel Trends). For each g P Gtrt, g1 P S and time
periods t such that t ě g and g1 ą maxtg, tu, with probability one,

E rYtp8q ´ Yt´1p8q|S “ g,Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S “ g,Q “ 0, Xs

“

E rYtp8q ´ Yt´1p8q|S “ g1, Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S “ g1, Q “ 0, Xs .

Assumption DDD-CPT is a conditional parallel trends assumption for DDD setups that gen-
eralizes the unconditional DDD parallel trend assumption for the two-period setup of Olden and
Møen (2022) to setups with multiple periods, staggered treatment adoption, and when assump-
tions are only plausible after conditioning on X. Assumption DDD-CPT can also be understood
as an extension of the conditional PT assumption based on not-yet-treated units from the DiD
setup of Callaway and Sant’Anna (2021) to our DDD setup— i.e., we can use any unit from groups
that either never enabled treatment or those that will eventually enable treatment. Moreover, if
covariates do not play any important identification role in the analysis, one can take X “ 1 for all
units, so Assumption DDD-CPT would hold unconditionally.

Several remarks about Assumption DDD-CPT are worth making. First, if all units in a group
S are eligible for treatment, Assumption DDD-CPT reduces to Assumption 5 of Callaway and
Sant’Anna (2021) under the no-anticipation condition in Assumption NA. However, this case is
not appealing to us, as that would not qualify as a DDD design. Second, as Assumption DDD-
CPT only holds after conditioning on covariates, it does not restrict the evolution of untreated
potential outcomes across covariate-strata, i.e., it allows for covariate-specific trends, which can
be very important in applications. Third, and perhaps the most empirically relevant, Assump-
tion DDD-CPT does not impose DiD-type parallel trends among units with S “ g—i.e., it does
not impose that E rYtp8q ´ Yt´1p8q|S “ g,Q “ 1, Xs “ E rYtp8q ´ Yt´1p8q|S “ g,Q “ 0, Xs—
nor impose DiD-type parallel trends across treated groups—i.e., it does not impose that
E rYtp8q ´ Yt´1p8q|S “ g,Q “ 1, Xs “ E rYtp8q ´ Yt´1p8q|S “ g1, Q “ 1, Xs. As such, Assump-
tion DDD-CPT allows for violations of traditional DiD-based PT, as long as these violations are
stable across groups. This observation is arguably what makes DDD appealing in setups in which
it can be used.
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3 Implications for Empirical Practices
Before introducing our formal results on identification, estimation, and inference for average treat-
ment effects in DDD designs, we challenge some standard empirical practices for DDD analyses
and highlight some important practical takeaway messages from our paper.

We first start with a simple setup with only two periods, t “ 1 and t “ 2, and two eligibility
groups, Si “ 2 (who enabled treatment in period 2) and Si “ 8 (who have not enabled treatment
by period two). As before, units are either eligible (Qi “ 1) or ineligible (Qi “ 0) for the treatment,
and we let Di,t be a treatment indicator for unit i in time period t, i.e., Di,t “ 1tt ě Si, Qi “ 1u.
Since there are only two eligibility groups and two time periods, the relevant group-time ATT
in such a scenario is ATT p2, 2q. As discussed in Olden and Møen (2022), when covariates are
not important for the analysis, one can use ordinary least squares (OLS) based on the following
three-way fixed effects linear regression specification to recover the ATT p2, 2q:

Yi,t “γi ` γs,t ` γq,t ` β3wfeDi,t ` εi,t, (3.1)

where γi are unit fixed effects, γs,t and γq,t are enabled-group-by-time and qualified-group-by-
time fixed effects, and β3wfe is the parameter of interest. Indeed, in this particular setup, under
Assumptions S, SO, NA, and DDD-CPT with X “ 1 a.s., it is straightforward to show that

β3wfe “

«

ˆ

E rY2 ´ Y1|S “ 2, Q “ 1s

˙

´

ˆ

E rY2 ´ Y1|S “ 2, Q “ 0s

˙

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

DiD estimand among S“2

ff

´

«

ˆ

E rY2 ´ Y1|S “ 8, Q “ 1s

˙

´

ˆ

E rY2 ´ Y1|S “ 8, Q “ 0s

˙

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

DiD estimand among S“8

ff

(3.2)

“ ATT p2, 2q.

The observation that β3wfe “ ATT p2, 2q in this simple setup has two implications: (i) one
can use a simple three-way fixed effects (3WFE) regression specification and use OLS to estimate
ATT p2, 2q in the DDD design, and (ii) DDD estimates can be understood as the difference between
two DiD estimates (Olden and Møen, 2022). Based on these, one may be tempted to extrapolate
these claims to more general setups. In what follows, we highlight that, unfortunately, this is not
warranted and that proceeding as such can lead to non-negligible biases. The solution to these
issues is relatively simple and involves adopting a “forward-engineering” approach to DDD setups
(Baker et al., 2025), recognizing its particularities.

3.1 DDD setup with two periods, with covariates being important

In this section, we illustrate the challenges of leveraging standard regression-based and DiD tools to
DDD setups using simple simulations in a setup where covariates are important for identification,
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i.e., when Assumption DDD-CPT is satisfied only after accounting for covariates. We consider a
design with four different time-invariant, unit-specific covariates, Xi “ pXi,1, Xi,2, Xi,3, Xi,4q

1, and
two periods and two treatment-enabling-groups. The true ATT p2, 2q in our simulations is zero.
To ease the exposition, we abstract from further details about the DGP and refer the reader to
Section 5.1 and Supplemental Appendix B.1 for a more detailed discussion.

Based on the discussion on DDD without covariates above, it is natural to consider three alter-
native ways to incorporate covariates in the analysis. The first approach would be to “extrapolate”
from (3.1), add the interactions of the time-invariant covariates with post-treatment dummies,

Yi,t “γi ` γs,t ` γq,t ` β̃3wfeDi,t ` pXi1tt“2uq1θ ` ui,t, (3.3)

and interpret the OLS estimates of β̃3wfe as estimates of ATT p2, 2q. The second natural way to
proceed is similar, but it would leverage the Mundlak device and replace unit fixed effects in (3.1)
with S-by-Q fixed effects, add covariates linearly,

Yi,t “γs,q ` γs,t ` γq,t ` β̌3wfeDi,t ` X 1
iθ ` ei,t, (3.4)

and interpret the OLS estimates of β̌3wfe as estimates of ATT p2, 2q. Both strategies leverage a
presumption that we can extend the 3WFE regression (3.1) to allow for covariate-specific trends
by linearly including X’s into it. A third strategy that is also a priori intuitive presumes that we
can write DDD estimates as the difference between two DiD estimates: one DiD using the subset
with S “ 2 and considering units treated if Q “ 1, and another DiD using the subset with S “ 8

and considering units treated if Q “ 1. Here, one could consider different estimation strategies,
but we focus on the doubly robust (DR) DiD estimators proposed by Sant’Anna and Zhao (2020).

To check if such alternative strategies recover the ATT p2, 2q, we draw 5, 000 units in each
simulation draw, compute estimates using these three alternative estimators, and repeat this 1, 000
times—we defer all details of the data generating process to Section 5.1 and Supplemental Appendix
B.1. Panels (a) and (b) from Figure 1 display the density of OLS estimates for the Di,t coefficient in
(3.3) and (3.4), while Panel (c) displays the density of the DDD estimates based on the difference
between two Sant’Anna and Zhao (2020) DR DiD estimators. These three panels make it clear that
when covariates are necessary to justify the plausibility of the DDD research design, using any of
these three procedures that are justified in DDD setups without covariates can lead to substantial
biases and harm policy recommendations and evaluations. In other words, these results highlight
that traditional 3WFE regression specifications are “too rigid” to be reliable for DDD analysis.
They also highlight that one cannot simply claim that DDD is the difference between two DiD
procedures.

A natural question that then arises is, what should we do instead? As we discuss in Section
4, one can form regression adjustment, inverse probability weighting, and doubly robust DDD
estimators that do not suffer from the shortcoming highlighted in Panel (a) - (c) in Figure 1. Among
these, we generally favor the DR DDD estimator as it is more robust against model misspecifications
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Figure 1: Density of different DDD estimates for ATT(2,2): two-period setup with covariates
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Notes: Simulation designs based on DGP 1 described in Section 5.1 and Supplemental Appendix B.1, with n “ 5, 000 and 1, 000 Monte
Carlo repetitions. True ATT p2, 2q is zero and is indicated in the solid vertical line in all panels. Panel (a) displays the density of OLS
estimates of β̃3wfe based on (3.3). Panel (b) displays the density of OLS estimates of β̌3wfe based on (3.4). Panel (c) displays the
density of the DDD estimates based on the difference between two doubly robust DiD estimators (Sant’Anna and Zhao, 2020). Panel
(d) displays the density of the estimates based on our proposed doubly robust DDD estimator described in (3.5). All densities are
computed across all simulation draws. Panels have the same x-axis range but different y-axis.

than the other alternatives. To form the DR DDD estimator for ATT p2, 2q, we need to estimates for
the outcome regression models mS“g,Q“q

Y2´Y1
pXq ” E rY2 ´ Y1|S “ g,Q “ q,Xs, and for the generalized

propensity score model pS“g,Q“qpXq ” PrS “ g,Q “ q|Xs. Let pmS“g,Q“q
Y1´Y0

pXq and ppS“g,Q“qpXq be
working models for these—e.g, a linear regression model and a multinomial logistic linear model.
Based on these estimates, we propose the following DR DDD estimator for the ATT p2, 2q:

zATT drp2, 2q “ En

”´

pwS“2,Q“1
trt pS,Qq ´ pwS“2,Q“0

comp pS,Q,Xq

¯´

Y2 ´ Y1 ´ pmS“2,Q“0
Y2´Y1

pXq

¯ı

` En

”´

pwS“2,Q“1
trt pS,Qq ´ pwS“8,Q“1

comp pS,Q,Xq

¯´

Y2 ´ Y1 ´ pmS“8,Q“1
Y2´Y1

pXq

¯ı

(3.5)

´ En

”´

pwS“2,Q“1
trt pS,Qq ´ pwS“8,Q“0

comp pS,Q,Xq

¯´

Y2 ´ Y1 ´ pmS“8,Q“0
Y2´Y1

pXq

¯ı

,

where EnrAs “ n´1
řn

i“1Ai denotes the sample mean, and the estimated weights pw are given by

pwS“2,Q“1
trt pS,Qq ”

1tS “ 2, Q “ 1u

Enr1tS “ 2, Q “ 1us
, pwS“g,Q“q

comp pS,Q,Xq ”

1tS “ g,Q “ qu ¨ ppS“2,Q“1pXq

ppS“g,Q“qpXq

En

„

1tS “ g,Q “ qu ¨ ppS“2,Q“1pXq

ppS“g,Q“qpXq

ȷ .

Interestingly, it is worth mentioning that although the DR DDD estimator in (3.5) cannot be
expressed as the difference between two DR DiD estimators, it is a function of three DR DiD
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estimators, each one using a particular subset of the untreated units as a comparison group.
For comparisons, we report in Panel (d) of Figure 1 the density of the estimates using the DR

DDD estimates based on (3.5). Clearly, our proposed DR DDD estimator mitigated the biases
associated with the other estimation strategies and led to substantially more precise estimates.
All in all, the results in Figure 1 highlight that common DDD practices can lead to misleading
conclusions. However, it is straightforward to bypass these limitations by adopting our DR DDD
estimators.

3.2 DDD setups with variation in treatment timing

The practical challenges of estimating average treatment effects in DDD setups are not confined
to the presence of covariates. Even in designs without covariates, the use of too-rigid 3WFE
regression specifications like (3.1) can lead to misleading estimates when there is variation in
treatment timing across groups (Strezhnev, 2023). In such cases, new identification and estimation
concerns emerge that the recent DiD literature does not address. In particular, in this section, we
highlight that unlike in staggered DiD procedures like Callaway and Sant’Anna (2021), pooling all
not-yet-treated units and using them as a comparison group does not respect the triple-differences
identification assumptions and, as such, can lead to biased estimates for the parameters of interest.
We also discuss straightforward and computationally simple estimators that bypass these problems.
Throughout this section, we assume that all identification assumptions discussed in Section 2.2
hold without covariates, i.e., by taking X “ 1 almost surely.

To build intuition, we begin by noting that the way the DiD literature has addressed the
shortcomings of using regression specifications akin to (3.1) to infer overall average treatment
effects is to decompose the problem into a series of 2-period 2-group (2ˆ 2) DiDs; for an overview,
see Roth et al. (2023) and Baker et al. (2025). A popular strategy involves using the units not yet
treated by period t as a comparison group when estimating ATT pg, tq (Callaway and Sant’Anna,
2021). It is thus intuitive and natural to build on Callaway and Sant’Anna (2021), Olden and
Møen (2022), and (3.2), and attempt to estimate ATT pg, tq in a DDD setup using

zATT cs-nytpg, tq “

«

ˆ

En rYt ´ Yg´1|S “ g,Q “ 1s

˙

´

ˆ

En rYt ´ Yg´1|S “ g,Q “ 0s

˙

ff

´

«

ˆ

En rYt ´ Yg´1|S ą t,Q “ 1s

˙

´

ˆ

En rYt ´ Yg´1|S ą t,Q “ 0s

˙

ff

(3.6)

in any post-treatment periods t ě g.7 The question now is whether (3.6) indeed recovers
ATT pg, tq’s under our identification assumptions.

To answer this practically relevant question, we conduct some Monte Carlo simulations for a
setup with three time periods, t “ 1, 2, 3, three treatment-enabling groups, S P t2, 3,8u, and two

7 Since there are no covariates, we do not need to use three DiDs as we discussed in Section 3.1.
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eligibility groups Q “ 1 and Q “ 0. We focus on ATT p2, 2q, i.e., the average treatment effect in
period two of being treated in period two, among units treated in period two. The true ATT p2, 2q

in our simulations is 10. We considered a setup with n “ 5, 000 and conducted 1, 000 simulation
draws. To ease the exposition, we abstract from further details about the DGP and refer the
reader to Section 5.2 and Supplemental Appendix B.2 for a more detailed discussion. Panel (a)
from Figure 2 displays the density of the DDD estimates for ATT p2, 2q based on (3.6). This result
makes it clear that, in general, (3.6) is not a valid estimator for the ATT p2, 2q in DDD setups, as
it is systematically biased. In fact, in our simulations, (3.6) always leads to a negative estimate
while the true effect is positive. This bias arises because the DDD parallel trends assumption is
more flexible than its DiD counterpart: it allows for treatment-enabling-groups- and partition-
specific violations of DiD-type parallel trends. In particular, when the fraction of eligible units
differs across treatment-enabling groups S, pooling not-yet-treated units may conflate trends across
heterogeneous populations, violating the assumptions necessary to interpret differences as causal.

Figure 2: Density of different staggered DDD estimates for ATT(2,2), without covariates
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(d) DDD using never-treated and GMM with not-
yet-treated units

Notes: Simulation designs based on the design described in Section 5.2 and Supplemental Appendix B.2, with n “ 5, 000 and 1, 000
Monte Carlo repetitions. The true ATT p2, 2q is ten and is indicated in the solid vertical line in all panels. Panel (a) displays the density
of DDD estimates that use the pooled not-yet-treated units as a comparison group as described in (3.6). Panel (b) displays the density of
the estimates based on our proposed DDD GMM estimator that uses all not-yet-treated units as a comparison group described in (3.8).
Panel (c) displays the density of the estimates based on our proposed DDD estimator that uses the never-treated units as a comparison
group described in (3.7) with gc “ 8. Panel (d) compares DDD estimates using never-treated units (yellow curve) with GMM-based
DDD using not-yet-treated (green curve), on the same scale. All densities are computed across all simulation draws. Panels(a)-(c) have
the same x-axis range but different y-axis.

The key insight to address these problems is that we should be careful when choosing the com-
parison group to learn each ATT pg, tq. Such comparison groups must satisfy the DDD identifica-
tion assumptions, which need to be verified group-by-group. Upon close inspection of Assumption
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DDD-CPT, a natural solution is to avoid pooling across treatment-enabling groups and use one of
them at a time. Doing so yields multiple valid comparisons for the same pg, tq group, generating
an over-identified system. More precisely, for each available not-yet-enabled group gc ą t, we can
use the following estimator for ATT pg, tq, t ě g:

zATT gcpg, tq “

«

ˆ

En rYt ´ Yg´1|S “ g,Q “ 1s

˙

´

ˆ

En rYt ´ Yg´1|S “ g,Q “ 0s

˙

ff

´

«

ˆ

En rYt ´ Yg´1|S “ gc, Q “ 1s

˙

´

ˆ

En rYt ´ Yg´1|S “ gc, Q “ 0s

˙

ff

. (3.7)

Note that when gc “ 8, (3.7) uses the set of units that never enabled treatment S “ 8 as the
comparison group. However, one is not restricted to this unique comparison group. In the context
of our simulation, one can also use the units that enabled treatment in period three to learn about
ATT p2, 2q. This highlights that, in our context, the DDD model is over-identified. In this sense,
instead of choosing which comparison group to use, we propose combining all available options and
forming a more efficient (minimum variance) DDD estimator for the ATT pg, tqs. More concretely,
we propose using

zATT optpg, tq “
11
pΩ´1

11
pΩ´1
g,t1

zATT drpg, tq, (3.8)

where zATT drpg, tq is the kg,t ˆ 1-dimensional vector of all possible (non-collinear) estimators for
ATT pg, tq that uses a valid comparison group gc ą t, pΩg,t is a consistent estimator of their variance-
covariance matrix, and 1 is a (kg,t ˆ 1-dimensional) vector of ones. We show that zATT optpg, tq has
a GMM interpretation based on re-centered influence functions in Remark 4.5.

Panels (b) and (c) of Figure 2 display the density of the DDD estimates for ATT p2, 2q based
on our GMM-based DDD estimator (3.7) and our DDD estimator that only uses the never-treated
as comparison group (3.7) with gc “ 8, respectively. As it is easy to see, both estimators are
correctly centered at the true ATT p2, 2q. As all panels in Figure 2 have the same scale, it is
challenging to compare our DDD estimates that combine all not-yet-treated units with our DDD
estimates that use never-treated units as comparison groups. In Figure 2(d), we address this issue
and display their densities based on the 1, 000 simulation draws. Overall, one can see that using all
not-yet-treated units can yield substantial gains in precision. In fact, the results of our simulations
indicate that confidence intervals based on zATT gc“8pg, tq are around 50% wider than those based
on zATT optpg, tq, underscoring the appeal of using our optimal DDD (GMM-based) estimator in
terms of power.

Overall, the results in this section underscore the broader lesson that DDD designs with stag-
gered adoption cannot be treated as simple extensions of DiD methods. The interaction between
timing, eligibility, and heterogeneity in group composition introduces complexities that require
more careful attention to identification and comparison group construction.

13



Although this section focused on settings without covariates, our methods naturally extend
to setups where covariates are necessary for identification. These generalizations are discussed
in Section 4, where we also explore extensions to event-study aggregations and treatment effect
heterogeneity across groups and time.

4 The econometrics of DDD designs
In this section, we discuss the econometrics of DDD designs following the framework discussed
in Section 2. We start by establishing nonparametric identification of the ATT pg, tq’s under the
identification assumptions in Section 2.2. We then discuss estimation and inference procedures for
ATT pg, tq’s and their event-study functional ESpeq as defined in (2.3). Throughout this section, we
focus on setups where covariates are important for identification, i.e., all the assumptions discussed
in Section 2.2 are only plausible after you condition on covariates. Results for unconditional DDD
setups follow as special cases by taking all covariates X “ 1 for all units. We also focus on
staggered treatment adoption DDD setups, as they nest DDD setups with a single treatment date.

4.1 Identification

In this section, we establish the nonparametric identification for the ATT pg, tq’s in all post-
treatment periods t ě g under Assumptions S, SO, NA, and DDD-CPT. Furthermore, we show
that one can use regression adjustment/outcome regression (RA), inverse probability weighting
(IPW), or doubly robust estimands to recover the ATT pg, tq’s. We also show that one can poten-
tially use different comparison groups, opening the door for combining these for potential efficiency
gains.

Before formalizing our results, we need to introduce some additional notation. Let
mS“g,Q“q

Yt´Yt1
pXq ” E rYt ´ Yt1 |S “ g,Q “ q,Xs denote the population regression function of changes

in outcomes from period t1 to period t given covariates X among units that enabled treat-
ment in period g (S “ g) that belongs to eligibility group q (Q “ q). Analogously, let
pS“g,Q“1
g1,q1 pXq ” PrS “ g,Q “ 1|X, pS “ g,Q “ 1q Y pS “ g1, Q “ q1qs denote the generalized

propensity score. Note that pS“g,Q“1
g1,q1 pXq indicates the probability of a unit being observed in

enabling group S “ g and being eligible for treatment (Q “ 1q, conditional on pre-treatment
covariates X and on either being in the S “ g group and being eligible for treatment, or being in
the S “ g1 group with eligibility to treatment Q “ q1.8

For any gc P S such that gc ą maxtg, tu, and any post-treatment period t ě g, let the doubly

8 We use this notion of generalize propensity score as it allow us to focus on sequences of two-groups comparisons as
in Lechner (2002) and Callaway and Sant’Anna (2021). One can understand these generalized propensity scores
as pS“g,Q“1

g,q pXq “
pS“g,Q“1pXq

pS“g,Q“1pXq`pS“g,Q“qpXq
with pS“g,Q“qpXq ” PrS “ g,Q “ q|Xs. We favor pS“g,Q“1

g,q pXq as
this is how we implement these when constructing our DDD estimators.
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robust DDD estimand for the ATT pg, tq be given by

ATT dr,gcpg, tq “ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“g,Q“0
Yt´Yg´1

pXq

¯ı

` E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,1 pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“gc,Q“1
Yt´Yg´1

pXq

¯ı

(4.1)

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,0 pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“gc,Q“0
Yt´Yg´1

pXq

¯ı

,

where the weights w are given by

wS“g,Q“1
trt pS,Qq ”

1tS “ g,Q “ 1u

Er1tS “ g,Q “ 1us
, wS“g,Q“1

g1,q1 pS,Q,Xq ”

1tS “ g1, Q “ q1u ¨ pS“g,Q“1
g1,q1 pXq

1 ´ pS“g,Q“1
g1,q1 pXq

E
«

1tS “ g1, Q “ q1u ¨ pS“g,Q“1
g1,q1 pXq

1 ´ pS“g,Q“q
g1,q1 pXq

ff . (4.2)

Analogously, let the RA DDD estimand for the ATT pg, tq be given by

ATT ra,gcpg, tq “ E
”

wS“g,Q“1
trt pS,Qq

´

Yt ´ Yg´1 ´mS“g,Q“0
Yt´Yg´1

pXq ´mS“gc,Q“1
Yt´Yg´1

pXq `mS“gc,Q“0
Yt´Yg´1

pXq

¯ı

(4.3)

and the IPW estimand be

ATT ipw,gcpg, tq “ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

pYt ´ Yg´1q

ı

´ E
”´

wS“g,Q“1
gc,1 pS,Q,Xq ´ wS“g,Q“1

gc,0 pS,Q,Xq

¯

pYt ´ Yg´1q

ı

. (4.4)

Theorem 4.1. Let Assumptions S, SO, NA, and DDD-CPT hold. Then, for all g P Gtrt, t P

t2, . . . , T u, and gc P S such that t ě g and gc ą t,

ATT pg, tq “ ATTdr,gcpg, tq “ ATT ra,gcpg, tq “ ATT ipw,gcpg, tq. (4.5)

Theorem 4.1 is the first main result of this paper. It establishes the nonparametric identification
of all post-treatment ATT pg, tq’s in DDD setups. It extends the DiD identification results of Call-
away and Sant’Anna (2021) to DDD setups. As such, it also extends the difference-in-differences
identification results based on the RA approach of Heckman, Ichimura and Todd (1997), the IPW
approach of Abadie (2005), and the DR approach of Sant’Anna and Zhao (2020) to DDD setups
with multiple periods and variation in treatment time. Theorem 4.1 also highlights that one can
use different parts of the data-generating process to identify the ATT pg, tq’s: the RA estimand
only models the conditional expectation of evolution of outcomes among untreated units, the IPW
approach only models the conditional probability of being observed in a given partition of the
S-by-Q groups, whereas the DR approach exploits both components. A big advantage of the DR
approach is that it is based on a Neyman-orthogonal moment condition (Belloni, Chernozhukov,
Fernández-Val and Hansen, 2017), and, therefore, it is more robust against model misspecifica-
tions than the IPW and RA formulations. In fact, it is very easy to show that estimators based
on ATT dr,gcpg, tq enjoy a very attractive doubly-robust property (Sant’Anna and Zhao, 2020) that
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allows for some forms of (global) model misspecifications.9

Another important result from Theorem 4.1 is that our DDD model is over-identified, as we
can use multiple not-yet-treated enabling groups gc as valid comparison groups. For instance, in
a setup with S P t2, 3,8u, we can set gc “ 3 or gc “ 8 to identify ATT p2, 2q, and both will lead
to the same target parameter. As a direct consequence of this result, any weighted sum of these
estimands that use different gc’s will also lead to the ATT pg, tq, as long as the weights sum up to
one. We formalize this result in the following corollary using the DR estimand, though this also
works with the RA and IPW. Let Gg,t

c “ tgc P S : gc ą maxtg, tuu.

Corollary 4.1. Let Assumptions S, SO, NA, and DDD-CPT hold. Then, for all g P Gtrt and
t P t2, . . . , T u such that t ě g, and any set of weights wg,t

gc that sum up to one over Gg,t
c ,

ATT pg, tq “
ÿ

gcPGg,t
c

wg,t
gc ATTdr,gcpg, tq.

As Corollary 4.1 indicates that all weighted sums lead to the same ATT pg, tq, a natural way to
choose these weights is to pick them such that we maximize precision in terms of minimizing the
resulting asymptotic variance. In the next session, we will discuss this in greater detail, connecting
these arguments to a formulation based on generalized methods of moments using re-centered
influence functions.

Remark 4.1. As we discussed in Section 3, in two-period DDD setups without covariates, one can
identify ATT p2, 2q using the difference of two DiD estimands as in (3.2) (Olden and Møen, 2022).
This equivalence breaks down when the DDD identification assumptions are only satisfied after you
condition on covariates X—see Figure 1. The econometric reason for this failure of equivalence is
that one needs to integrate the covariates using the covariate distribution among treated units, i.e.,
units with S “ 2 and Q “ 1. Proceeding as if ATT p2, 2q were the difference of two DiD estimands
would integrate X using the covariate distribution of untreated units (S “ 8 and Q “ 1), leading
to biases. The results in Theorem 4.1 address this problem by guaranteeing that one integrates
out covariates using the correct reference distribution, which leads to a combination of three DiD
estimands and not only two.

Remark 4.2. Although Theorem 4.1 and Corollary 4.1 allow one to use several different not-yet-
treated cohorts gc as the comparison group, it does not allow one to pool all not-yet-treated units
and use that pooled set of units as the aggregate comparison group to identify ATT pg, tq in DDD.
This sharply contrasts DiD procedures such as those discussed in Callaway and Sant’Anna (2021)—
see Figure 2a for an illustration of the bias that can arise by following this type of procedure. The
econometric reasoning for such results is that Assumption DDD-CPT allows for both enabling-
group- and eligibility-group-specific trends, and it does not impose that the proportion of units in

9 For an overview of doubly robust estimators in cross-sectional designs, see section 2 of Słoczyński and Wooldridge
(2018), and Seaman and Vansteelandt (2018).
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each eligibility group Q is the same across all enabling groups S. As such, Assumption DDD-CPT
does not guarantee that, with probability one,

E rYtp8q ´ Yt´1p8q|S “ g,Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S “ g,Q “ 0, Xs

“

E rYtp8q ´ Yt´1p8q|S ą t,Q “ 1, Xs ´ E rYtp8q ´ Yt´1p8q|S ą t,Q “ 0, Xs ,

as it would be required to use the pooled, not-yet-treated units as a comparison group.

Remark 4.3. As Theorem 4.1 establishes nonparametric identification of the ATT pg, tq’s over all
post-treatment periods and that PpG “ g|G ` e P r1, T sq is also nonparametrically identified, it
follows that event-study parameters that aggregate across eligibility-groups, ESpeq as defined in
(2.3), is also nonparametrically identified. For instance, it follows that for any event-time e ě 0,

ESpeq “
ÿ

gPGtrt

PpG “ g|G ` e P r1, T sqATTdr,gcpg, g ` eq. (4.6)

One can also replace ATTdr,gcpg, g` eq with their analogs in Corollary 4.1 or with the RA or IPW
estimands in Theorem 4.1. One can also use Theorem 4.1 to establish the identification of many
other aggregate summary causal parameters discussed in Section 3 of Callaway and Sant’Anna
(2021).

Remark 4.4. One of the biggest appeals of DiD and DDD setups is the availability of pre-
treatment periods that allow the assessment of the plausibility of PT assumptions, such as As-
sumption DDD-CPT. Under Assumption NA, a very popular way to assess the plausibility of PT
is to construct event-study plots based on ESpeq as in (2.3), consider both pre-treatment (e ă 0)
and post-treatment (e ě 0) event times, and check whether pre-treatment event-study coefficients
are all close to zero. It is straightforward to adapt this strategy in our DDD context by fixing
the statistical estimand—for example, the ATT dr,gcpg, tq in (4.1)—consider pre-treatment periods
t ă g, and then aggregate them using cohort-size. More specifically, for any event-time e ă 0,

ESpeq “
ÿ

gPGtrt

PpG “ g|G ` e P r1, T sqATTdr,gcpg, g ` eq. (4.7)

Note that when e “ ´1, ESpeq “ 0 by construction, as we fix the baseline period at the last
untreated period for group g, g ´ 1. Based on these event-study aggregations, it is also possible
to conduct sensitivity analysis for the plausibility of Assumption DDD-CPT using the results in
Rambachan and Roth (2023).

4.2 Estimation and inference

In this section, we now propose simple-to-use plug-in estimators for the ATT pg, tqs and ESpeqs
parameters, and discuss how one can conduct valid inference for these parameters. We focus on
the doubly robust DDD estimator; the results for the RA and IPW DDD estimators are analogous.
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First, notice that for any gc P S such that gc ą maxtg, tu, Theorem 4.1 suggests that we can
estimate ATT pg, tq by using the sample analogue of (4.1),

zATT dr,gcpg, tq “ En

”´

pwS“g,Q“1
trt pS,Qq ´ pwS“g,Q“1

g,0 pS,Q,Xq

¯´

Yt ´ Yg´1 ´ pmS“g,Q“0
Yt´Yg´1

pXq

¯ı

` En

”´

pwS“g,Q“1
trt pS,Qq ´ pwS“g,Q“1

gc,1 pS,Q,Xq

¯´

Yt ´ Yg´1 ´ pmS“gc,Q“1
Yt´Yg´1

pXq

¯ı

(4.8)

´ En

”´

pwS“g,Q“1
trt pS,Qq ´ pwS“g,Q“1

gc,0 pS,Q,Xq

¯´

Yt ´ Yg´1 ´ pmS“gc,Q“0
Yt´Yg´1

pXq

¯ı

,

where the estimated weights pw are given by

pwS“g,Q“1
trt pS,Qq ”

1tS “ g,Q “ 1u

Enr1tS “ g,Q “ 1us
, pwS“g,Q“1

g1,q1 pS,Q,Xq ”

1tS “ g1, Q “ q1u ¨ ppS“g,Q“1
g1,q1 pXq

1 ´ ppS“g,Q“1
g1,q1 pXq

En

«

1tS “ g1, Q “ q1u ¨ ppS“g,Q“1
g1,q1 pXq

1 ´ ppS“g,Q“q
g1,q1 pXq

ff ,

and pmS“gc,Q“1
Yt´Yg´1

pXq and ppS“g,Q“1
g1,q1 pXq are (potentially misspecified) working models for the outcome

regression mS“gc,Q“1
Yt´Yg´1

pXq and the generalized propensity score ppS“g,Q“1
g1,q1 pXq. These estimators ex-

tend the DR DiD estimator of Callaway and Sant’Anna (2021) to the DDD setup, and remain
consistent if either outcome regression or generalized propensity score models are correctly speci-
fied. It is also worth stressing that we do not need that all generalized propensity score working
models or all outcome regression working models in (4.8) to be correctly specified to get a con-
sistent DDD estimator for ATT pg, tq; it suffices that any of the working models within each of
the 3 DR DiD components of (4.8) to be correctly specified, allowing a greater deal of estimation
flexibility.10

As Corollary 4.1 highlights, one can also combine several zATT dr,gcpg, tq that leverage different
comparison groups gc, i.e., for any (consistently estimated) weights pwg,t

gc that sum up to one over
Gc,

zATT dr, pwpg, tq “
ÿ

gcPGg,t
c

pwg,t
gc

zATT dr,gcpg, tq “ pwg,t 1
zATT drpg, tq, (4.9)

where zATT drpg, tq is the kg,t ˆ 1 vector of zATT dr,gcpg, tq for all gc P Gg,t
c , and pwg,t 1 is a kg,t ˆ 1

vector of (estimated) weights that sum up to one, i.e., for a generic vector of ones 1, 11wg,t “ 1.
A natural question that arises is: how should one choose these weights pwg,t

gc ? We propose to
choose the weights that lead to the asymptotically most precise (minimum variance) estimator for
ATT pg, tq, that is, to pick weights that solve

min
wg,t

wg,t 1
pΩg,t w

g,t subject to 11wg,t “ 1, (4.10)

where pΩg,t is a kg,t ˆ kg,t consistent estimator for the variance-covariance matrix of zATT drpg, tq.
Notice that the solution of (4.10) admits a closed-form solution, and the optimal weights are given

10 Some people may call this a multiply-robust estimator, as one has more than two opportunities to estimate the
target parameter consistently. For simplicity, we retain the doubly robust terminology to avoid new acronyms.
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by

pwg,t
opt “

pΩ´1
g,t1

11
pΩ´1
g,t1

. (4.11)

In turn, this implies that the linear combination of zATT dr,gcpg, tq that leads to the most precise
estimator for ATT pg, tq is given by

zATT dr,optpg, tq “
11
pΩ´1
g,t

11
pΩ´1
g,t1

zATT drpg, tq. (4.12)

In many situations with multiple periods and variation in treatment time, researchers are
interested in summarizing the ATT pg, tq’s into fewer parameters that highlight treatment effect
heterogeneity with respect to the time elapsed since treatment take-up. That is, very often,
researchers are interested in estimating event-study type parameters ESpeq as defined in (2.3).
A very natural estimator for ESpeq is the plug-in estimator, where we replace ATT pg, tq with
zATT dr,optpg, tq (or zATT dr,gcpg, tq), and PpG “ g|G ` e P r1, T sq by its sample analogue, that is,

xESdr,optpeq “
ÿ

gPGtrt

PnpG “ g|G ` e P r1, T sqzATT dr,optpg, g ` eq, (4.13)

where PnpG “ g|G ` e P r1, T sq “
řn

i“1 1tGi “ gu1tGi ` e P r1, T su
L
řn

j“1 1tGj ` e P r1, T su. We
can define xESdr,gcpeq analogously by replacing zATT dr,optpg, g`eq with zATT dr,gcpg, g`eq on (4.13).
Based on it, we can also estimate an overall summary parameter by averaging all post-treatment
event times, i.e.,

xESavg, opt
1

NE

ÿ

ePE

xESdr,optpeq. (4.14)

Remark 4.5. It is also worth noticing that zATT dr,optpg, tq in (4.12) can be interpreted as an opti-
mal Generalized Method of Moments (GMM) estimator based on re-centered influence functions.
To see this, let IFdr,gcpg, tq denote the influence function of

?
n
´

zATT dr,gcpg, tq ´ ATTdr,gcpg, tq
¯

.
Let RIFdr,gcpg, tq “ IFdr,gcpg, tq ` ATT dr,gcpg, tq denote its re-centered influence function, and de-
note the kg,t ˆ 1 vector of all RIFdr,gcpg, tq for gc P Gg,t

c by RIFdrpg, tq. Since influence functions are
mean zero, and that ATT pg, tq “ ATTdr,gcpg, tq for any gc P Gg,t

c , we have the vector of moment
conditions ErRIFdrpg, tq ´ θg,ts “ 0, with θg,t “ ATT pg, tq. From standard GMM results (Newey
and McFadden, 1994), it follows that, under mild regularity conditions, the optimal (population)
GMM estimator for θg,t is given by

θg,topt “
11Ω´1

g,t

11Ω´1
g,t1

ErRIFdrpg, tqs “
11Ω´1

g,t

11Ω´1
g,t1

ATTdrpg, tq,

where the last equality follows from ErIFdrpg, tqs “ 0. Thus, zATT dr,optpg, tq in (4.12) is the sample-
analogy of the efficient population GMM θg,topt.
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4.2.1 Asymptotic theory for ATT(g,t)’s

In what follows, we derive the large sample properties of our DR DDD estimators zATT dr,gcpg, tq

and zATT dr,optpg, tq. All our results are derived for the large n, fixed T paradigm. For
a generic Z, let ||Z|| “

a

tracepZ 1Zq denote the Euclidean norm of Z and set Wi “

pYi,t“1, . . . , Yi,t“T , X
1
i, Gi, Si, Qiq

1; we will omit the index i to unclutter the notation. Let gp¨q

be a generic notation for the outcome regressions mS“g1,Q“q
Yt´Yt1

pXq and generalized propensity scores
pS“g,Q“1
g1,q1 pXq, and, with some abuse of notation, let gp¨; γq denote a parametric model for gp¨q that

is known up to the finite-dimensional parameters γ. For a generic κg,tgc “ pγps 1
g,t,gc , γ

reg 1
g,t,gcq1, with γpsg,t,gc

and γregg,t,gc being nuisance parameters for the generalized propensity score and outcome regressions,
respectively, let

hg,tgc pW ;κg,tgc q “

´

wS“g,Q“1
trt pW q ´ wS“g,Q“1

g,0 pW ; γpsg,t,gcq

¯´

Yt ´ Yg´1 ´mS“g,Q“0
Yt´Yg´1

pX; γregg,t,gcq

¯

`

´

wS“g,Q“1
trt pW q ´ wS“g,Q“1

gc,1 pW ; γpsg,t,gcq

¯´

Yt ´ Yg´1 ´mS“gc,Q“1
Yt´Yg´1

pX; γregg,t,gcq

¯

´

´

wS“g,Q“1
trt pW q ´ wS“g,Q“1

gc,0 pW ; γpsg,t,gcq

¯´

Yt ´ Yg´1 ´mS“gc,Q“0
Yt´Yg´1

pX; γregg,t,gcq

¯

,

where the weights wpW ; γpsg,t,gcq are defined similarly to those in (4.2), with the difference being
that the true unknown generalized propensity score models are replaced by working parametric
counterparts, pS“g,Q“1

g1,q1 pX; γpsg,t,gcq, and the true unknown outcome regression models mS“g1,Q“q
Yt´Yg´1

pXq

are also replaced with parametric working models, mS“g1,Q“q
Yt´Yg´1

pX; γregg,t,gcq. We denote the vector of
pseudo-true parameters by κg,t0,gc and let 9hg,tgc pκq “ Bhg,tgc pW ;κq{Bκ.

To derive our results, we make the following relatively mild assumptions.

Assumption WM (Working Model Conditions). (i) gpx; γq is a parametric model for gpxq, where
γ P Θ Ă Rdk is a compact set; (ii) the mapping θ ÞÑ gpX; θq is a.s. continuous; (iii) the pseudo-true
parameter θ0 P intpΘq satisfies that for an appropriate criterion function Q : Θ Ñ R and for any
ϵ ą 0, there exists some δ ą 0 such that infθPΘ:}θ´θ0}ěϵQpθq ´ Q pθ0q ą δ; (iv) there exists an
open neighborhood Θ0 Ă Θ containing θ0 such that gpX; γq is a.s. continuously differentiable in
a neighborhood of γ0 P Θ0. In addition, (v) there exists some ϵ ą 0 such that, for all pg, g1, q1q P

Gtrt ˆ Gg,t
c ˆ t0, 1u, we have that 0 ď pS“g,Q“1

g1,q1 pX; θq ď 1 ´ ϵ a.s. for all θ P intpΘpsq, where Θps

denotes the parameter space of γ for the generalized propensity score working model.

Assumption ALR (
?
n-Asymptotically Linear Representation). Let θ̂ be a strongly consistent

estimator of θ0 ÞÑ gpx; θ0q and satisfy the following linear expansion

?
n
´

pθ ´ θ0

¯

“
1

?
n

n
ÿ

i“1

l pWi; θ0q ` opp1q (4.15)

where l p¨; ¨q is a function such that E rl pWi; θ0qs “ 0; E
”

l pWi; θ0q ¨ l pWi; θ0q
1
ı

ă 8 and is positive
definite; and limδÑ0 E

“

supθPΘ0:}θ´θ0}ďδ }lpW ; θq ´ lpW ; θ0q}
2
‰

“ 0.
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Assumption IC (Integrability Conditions). For each g P Gtrt, t P t2, . . . , T u, and g1 P Gg,t
c , assume

that Er}hg,tgc pW ;κg,t0,gcq}2s ă 8 and E
”

supκPΓ0

ˇ

ˇ

ˇ

9hg,tgc pκq

ˇ

ˇ

ˇ

ı

ă 8, where Γ0 is a small neighborhood of
the pseudo-true parameter κg,t0,gc .

Assumptions WM-IC are standard in the literature; see e.g., Abadie (2005); Wooldridge (2007);
Sant’Anna and Zhao (2020); Callaway and Sant’Anna (2021). Assumptions WM and ALR impose
a well-behaved parametric structure for the first-step estimators for the nuisance parameters. This
assumption is made for statistical convenience and acknowledges that, in many DDD applications,
the number of units in each group is small, making it difficult to adopt a nonparametric approach
reliably. It is relatively straightforward to relax these conditions and allow for nonparametric or
even Machine-Learning based estimators; see, e.g., Sant’Anna and Xu (2023) for detailed argu-
ments on these in a DiD setup with compositional changes. Assumption IC imposes mild regularity
constraints on the moments of the estimating equations, preventing ill-behaved variance properties
and ensuring the stability of higher-order approximations.

In what follows, we omit W and X from the weights and outcome regressions to minimize
notation, and for a generic κg,tgc , let

ψg,t
gc pW ;κg,tgc q “ ψg,t

S“g,Q“0pW ;κg,tgc q ` ψg,t
S“gc,Q“1pW ;κg,tgc q ´ ψg,t

S“gc,Q“0pW ;κg,tgc q, (4.16)

where, for pg1, q1q P tpg, 0q, pgc, 1q, pgc, 0qu, ψg,t
S“g1,Q“q1pW ;κg,tgc q is an influence function for one of the

three DR DiD components of the DR DDD, and is given by

ψg,t
S“g1,Q“q1pW ;κg,tgc q “ ψg,t,1

S“g1,Q“q1pW ;κg,tgc q ´ ψg,t,0
S“g1,Q“q1pW ;κg,tgc q ´ ψg,t,est

S“g1,Q“q1pW ;κg,tgc q, (4.17)

with

ψg,t,1
S“g1,Q“q1pW ;κg,tgc q “ wS“g,Q“1

trt

´

Yt ´ Yg´1 ´ mS“a,Q“b
Yt´Yg´1

pγregg,t,gcq

¯

´ wS“g,Q“1
trt E

”

wS“g,Q“1
trt

´

Yt ´ Yg´1 ´ mS“a,Q“b
Yt´Yg´1

pγregg,t,gcq

¯ı

ψg,t,0
S“g1,Q“q1pW ;κg,tgc q “ wS“g,Q“1

g1,q1 pγpsg,t,gcq

´

Yt ´ Yg´1 ´ mS“a,Q“b
Yt´Yg´1

pγregg,t,gcq

¯

´ wS“g,Q“1
g1,q1 pγpsg,t,gcqE

”

wS“g,Q“1
g1,q1 pγpsg,t,gcq

´

Yt ´ Yg´1 ´ mS“a,Q“b
Yt´Yg´1

pγregg,t,gcq

¯ı

and

ψg,t,est
S“g1,Q“q1pW ;κg,tgc q “ lg,t,regS“g1,Q“q1pγ

ref
g,t,gcq1M g,t,1

S“g1,Q“q1pκ
g,t
gc q ` lg,t,psS“g1,Q“q1pγ

ps
g,t,gcq1M g,t,2

S“g1,Q“q1pκ
g,t
gc q

where lg,t,regS“g1,Q“q1p¨q is the asymptotic linear representation of the outcome evolution for the group
with S “ g1 and Q “ q1 as described in Assumption ALR, lg,t,psS“g1,Q“q1p¨q is defined analogously for
the generalized propensity score that uses group S “ a,Q “ b as a comparison group, and

Mg,t,1
S“g1,Q“q1 pκ

g,t
gc q “ E

”´

wS“g,Q“1
trt ´ wS“g,Q“1

g1,q1 pγpsg,t,gc q

¯

9mS“a,Q“b
Yt´Yg´1

pγregg,t,gc q

ı

,

Mg,t,2
S“g1,Q“q1 pκ

g,t
gc q “ E

”

αS“g,Q“1
g1,q1 pγpsg,t,gc q

´

Yt ´ Yg´1 ´mS“a,Q“b
Yt´Yg´1

pγregg,t,gc q

¯

¨ 9pS“g,Q“q
g1,q1 pγpsg,t,gc q

ı

´ E
”

αS“g,Q“1
g1,q1 pγpsg,t,gc q

´

E
”

wS“g,Q“1
g1,q1 pγpsg,t,gc q

´

Yt ´ Yg´1 ´mS“a,Q“b
Yt´Yg´1

pγregg,t,gc q

¯ı¯

¨ 9pS“g,Q“q
g1,q1 pγpsg,t,gc q

ı
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with 9mS“a,Q“b
Yt´Yg´1

pγregg,t,gcq “ BmS“a,Q“b
Yt´Yg´1

pγregg,t,gcq
L

Bγregg,t,gc , 9pS“g,Q“q
g1,q1 pγpsg,t,gcq “ BpS“g,Q“q

g1,q1 pγpsg,t,gcq
L

γpsg,t,gc , and

αS“g,Q“1
g1,q1 pγpsg,t,gc q “

1tS “ a,Q “ bu
´

1 ´ pS“g,Q“1
g1,q1 pX; γpsg,t,gc q

¯2

O

E
«

1tS “ a,Q “ bu ¨ pS“g,Q“1
g1,q1 pX; γpsg,t,gc q

1 ´ pS“g,Q“q
g1,q1 pX; γpsg,t,gc q

ff

.

For each g P Gtrt and each t P t2, 3, . . . , u, let ATT drpg, tq denote the kg,t ˆ 1 vec-
tor of ATT dr,gcpg, tq for all (non-collinear) gc P Gg,t

c , and Ωg,t be the asymptotic variance-
covariance matrix of

?
n
´

zATT drpg, tq ´ ATT drpg, tq
¯

, i.e., Ωg,t “ E rψg,tpW ;κg,tqψg,tpW ;κg,tq1s,
with ψg,tpW ;κg,tq being the kg,t ˆ 1 vector that stacks all non-collinear ψg,t

gc pW ;κg,tgc q for gc P Gg,t
c .

Let ATT dr,optpg, tq “ p11Ω´1
g,t1q´111Ω´1

g,t ATTdrpg, tq, and for a generic set of weights that sum up
to one, let ATT dr,wpg, tq “

ř

gcPGg,t
c
wg,t

gc ATTdr,gcpg, tq, and recall that zATT dr, pwpg, tq is its empirical
analogue as defined in (4.9). Finally, let pΩg,t be the empirical analogue of Ωg,t, where one replaces
expectations by sample analogues and κg,t with pκg,t, and consider the following claim:

For each g P Gtrt, t P t2, . . . , T u such that t ě g, and each gc P Gg,t
c ,

we have that, for each pg1, q1q P tpg, 0q, pgc, 1q, pgc, 0qu,

Dγps0,g,t,gc P Θps : PppS“g,Q“q
g1,q1 pX; γps0,g,t,gcq “ pS“g,Q“q

g1,q1 pXqq “ 1 or (4.18)
Dγreg0,g,t,gc P Θreg : PpmS“g,Q“q

g1,q1 pX; γreg0,g,t,gcq “ mS“g,Q“q
g1,q1 pXqq “ 1.

Claim (4.18) states that for each pg, tq-pair and each suitable comparison group gc, either the
working parametric model for the generalized propensity score is correctly specified, or the working
outcome regression model for the comparison group is correctly specified for each of the three DiD
components of our DDD estimator. Thus, eight possible working model combinations would lead
to consistent DDD estimation of the ATT pg, tq parameter.

The next theorem establishes the limiting distribution of zATT dr,gcpg, tq and zATT dr, optpg, tq.

Theorem 4.2 (Consistency and Asymptotic Normality). Let Assumptions S, SO, NA, DDD-CPT,
WM, ALR, and IC hold. Then, for all g P Gtrt, t P t2, . . . , T u, and gc P Gg,t

c such that t ě g,
provided that (4.18) is true,

?
n
´

zATT dr,gcpg, tq ´ ATT pg, tq
¯

“
1

?
n

n
ÿ

i“1

ψg,t
gc pWi;κ

g,t
0,gcq ` opp1q

d
Ñ Np0,Ωg,t,gcq,

where Ωg,t,gc “ E
“

ψg,t
gc pWi;κ

g,t
0,gcqψg,t

gc pWi;κ
g,t
0,gcq1

‰

. Furthermore,

?
n
´

zATT dr,optpg, tq ´ ATT pg, tq
¯

“
11Ω´1

g,t

11Ω´1
g,t1

1
?
n

n
ÿ

i“1

ψg,tpWi;κ
g,t
0 q ` opp1q

d
Ñ Np0,Ωg,t,optq,

where Ωg,t,opt “
`

11Ω´1
g,t1

˘´1
ď Ωg,t,gc for any gc P Gg,t

c . In fact, for any set of weights w that
sum up to one over the Gg,t

c , Ωg,t,opt ď Ωg,t,w, with Ωg,t,w defined as the asymptotic variance of
?
n
´

zATT dr, pwpg, tq ´ ATT dr,wpg, tq
¯

.

Theorem 4.2 provides the influence function for estimating each ATT pg, tq, using different com-
parison groups gc, as well as establishes the consistency and asymptotic normality of our DR DDD
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estimator zATT dr,gcpg, tq. Theorem 4.2 also highlights that combining different comparison groups
as our DR DDD estimator zATT dr, optpg, tq does is effective in terms of asymptotically improving
precision. That is, Theorem 4.2 highlights that zATT dr, optpg, tq is optimal in the sense that it
asymptotically achieves the minimum variance across all weighted average estimators that com-
bine multiple zATT dr,gcpg, tqs. Importantly, Theorem 4.2 also highlights the doubly (or multiply)
robust property of our DDD estimators: they recover the ATT pg, tq provided that each of the
three DR DiD estimators has a correctly specified outcome regression or generalized propensity
score working model.

Remark 4.6. Although Theorem 4.2 provides pointwise inference results for each ATT pg, tq, it is
straightforward to extend it to hold simultaneously across multiple ATT pg, tq’s. For instance,
by letting zATT opt,těg and ATT opt,těg denote the vector of zATT dr,optpg, tq and ATT dr,optpg, tq,
respectively, for all g P Gtrt, t P t2, . . . , T, u such that t ě g, it is straightforward to show
that

?
n
´

zATT opt,těg ´ ATT opt,těg

¯

d
Ñ Np0,Ωq, with Ω “ Erψtěg

opt pWi;κ
těg
0 qψtěg

opt pWi;κ
těg
0 q1s, with

ψtěg
opt pWi;κ

těg
0 q the asymptotic linear representation of

?
n
´

zATT opt,těg ´ ATT opt,těg

¯

. One can
then construct simultaneous confidence bands using a simple-to-use multiplier bootstrap as dis-
cussed in Theorem 3 and Algorithm 1 of Callaway and Sant’Anna (2021). It is also straightforward
to conduct cluster-robust inference; see Remark 10 of Callaway and Sant’Anna (2021). As these
results are commonly accessible, we will not include them here to conserve space.

4.2.2 Asymptotic theory for event-study parameters

In this section, we derive large sample properties for our event-study estimator xESdr,optpeq as
defined in (4.13). Given that PnpG “ g|G ` e P r1, T sq is an

?
n-consistent and asymptotically

normal estimator of PpG “ g|G ` e P r1, T sq, then for all g P Gtrt, we have that

?
npPnpG “ g|G ` e P r1, T sq ´ PpG “ g|G ` e P r1, T sqq “

1
?
n

n
ÿ

i“1

ξg,epWiq ` opp1q, (4.19)

with Erξg,epW qs “ 0 and Erξg,epW qξg,epW q1s ă 8 being positive definite, and

ξg,epW q “
1

PpG ` e P r1, T sq
¨

„

1tG “ g,G`e P r1, T su´PpG “ g|G`e P r1, T sq ¨1tG`e P r1, T su

ȷ

The following corollary can be used to conduct asymptotically valid (pointwise) inference for
the event-study type parameter ESpeq.

Corollary 4.2. Under the assumptions of Theorem 4.2, for each e such that Pp1 ď G ` e ď T q,
as n Ñ 8,

?
np xESdr,optpeq ´ ESpeqq “

1
?
n

n
ÿ

i“1

les,eopt pWiq ` opp1q

d
Ñ Np0,Erles,eopt pW q2sq,
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with les,eopt pW q “
ř

gPGtrt

´

PpG “ g|G ` e P r1, T sq ¨
11Ω´1

g,t

11Ω´1
g,t1

ψg,tpWi;κ
g,t
0 q ` ξg,epWiq ¨ ATT pg, tq

¯

.

The results in Corollary 4.2 also apply to estimators of ESpeq using zATT dr,gcpg, g`eq on (4.13).
Corollary 4.2 focuses on pointwise inference procedures. Still, as discussed in Remark 4.6, it is
straightforward to extend it to hold for all event-times e and conduct simultaneous-based inference.
The asymptotic results for our overall summary parameter xESavg, opt as defined in (4.14) follow
from the delta method and are omitted.

5 Monte Carlo Simulations
In this section, we evaluate the finite sample properties of our proposed DR DDD estimators via
Monte Carlo simulations. We examine two scenarios: (i) when covariates play a crucial role in
identification across two time periods, and (ii) when there are multiple time periods with variation
in treatment timings. For the first scenario, we have panel data for two time periods, t “ 1, 2,
four covariates, two enabling-groups S P t2,8u, and there are two eligibility groups: Q “ 1 and
Q “ 0. In the setup with staggered adoption, we consider the simplest possible case with three
time periods, t “ 1, 2, 3, with S P” t2, 3,8u, and we abstract from covariates in the main text.
We relegate simulation results with DDD staggered adoption with covariates to the Supplemental
Appendix. In the main text, we compare the performance of different DDD estimators via graphs:
one that presents the density of the point estimates across the 1,000 Monte Carlo repetitions, and
one that presents the length of confidence intervals in each Monte Carlo draw. In the Supplemental
Appendix, we also report the traditional summary statistics for the Monte Carlo involving average
bias, root mean square error (RMSE), empirical 95% coverage probability, and the average length
of a 95% confidence interval under 1,000 Monte Carlo repetitions. Light-gray confidence intervals
mean that they do not contain the true parameter of interest, ATT p2, 2q in our simulations, and
are appropriately colored when they contain it. We focus on results with n “ 5, 000 but report
results for different sample sizes in the Supplemental Appendix B.

5.1 Simulations for DDD with two periods and covariates

We describe the data-generating process (DGP) for the 2-period DDD setup. For a generic four-
dimensional vector O, the conditional probability of each unit belonging to a subgroup pg, qq P

t2,8u ˆ t0, 1u is

PrS “ g,Q “ q|Os ” pS“g,Q“qpOq “
exppf ps

S“g,Q“qpOqq
ř

pg,qqPSdes-1ˆt0,1u exppf ps
S“g,Q“qpOqq

, (5.1)

where f ps
S“g,Q“qpOqq is a linear index with heterogeneous coefficients across sub-groups; we defined

these in the Supplemental Appendix B.1 to save space. Of course, each unit belongs to a single
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subgroup, and we assigned these subgroups as follows:

pS,Qq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p8, 0q, if U ď pS“8,Q“0pOq,

p8, 1q, if pS“8,Q“0pOq ă U ď
ř1

j“0 p
S“8,Q“jpOq,

p2, 0q, if
ř1

j“0 p
S“8,Q“jpOq ă U ď

ř1
j“0 p

S“8,Q“jpOq ` pS“2,Q“0pOq,

p2, 1q, if
ř1

j“0 p
S“8,Q“jpOq ` pS“2,Q“0pOq ă U,

(5.2)

with U being a uniform random variable in r0, 1s, independent of all other variables.
The potential outcomes are defined as

Yi,1p8q “ f regpOi, Siq ` νipOi, Si, Qiq ` εi,1p8q

Yi,2p8q “ 2f regpOi, Siq ` νipOi, Si, Qiq ` εi,2p8q (5.3)
Yi,2p2q “ 2f regpOi, Siq ` νipOi, Si, Qiq ` εi,2p2q,

where f regpOi, Siq is a linear regression specification with heterogeneous coefficients across the
enabling groups S, νipOi, Si, Qiq is a time-invariant unobserved heterogeneity correlated with co-
variates and sub-groups, and εi,1p8q, εi,2p8q and εi,2p2q are independent standard normal random
variables; we provide a precise definition of f regpOi, Siq and νipOi, Si, Qiq in the Supplemental
Appendix B.1. Note that our designs’ ATT p2, 2q equals zero, though there is treatment effect
heterogeneity across units. We observe untreated outcomes for all units in period t “ 1; in period
t “ 2, we observed Yi,2p2q if unit i belongs to group S “ 2, Q “ 1, and observe Yi,“2p8q otherwise.

Building on Kang and Schafer (2007) and Sant’Anna and Zhao (2020), we allow propensity score
and/or outcome regression models to be misspecified. We consider four different types of DGP:
DGP 1, where all models are correctly specified; DGP 2, where outcome models are correctly
specified but the propensity score model is misspecified; DGP 3, where the propensity score is
correctly specified but outcome regressions are not; and DGP 4, where all models are misspecified.
The source of misspecification in these nuisance models is related to whether they depend on X

or Z, where X is a nonlinear transformation of all the Z’s. In our simulations, the observed data
is Wi “ tYi,1, Yi,2, Si, Qi, Xiu

n
i“1, so using Z as linear covariates in these nuisance models lead to

working model misspecification; we relegate to the Supplemental Appendix B.1 the definition of
X’s and Z’s.

We compare the performance of four different estimators for ATT p2, 2q, just like in Section 3.1:
our DR DDD estimator as defined in (3.5) (we label it as DRDDD), 3WFE OLS estimator for β̃3wfe

based on (3.3) (we label it as 3WFE), 3WFE OLS estimator of β̌3wfe based on (3.4) (we label it
as M-3WFE), and the difference of two Sant’Anna and Zhao (2020)’ DR DiD estimators (we label
it as DRDID-DIF). We summarize the results of our simulations in Figure 3, where we consider a
sample size n “ 5, 000 and conducted 1,000 Monte Carlo repetitions. The left panels display the
density of the point estimates across all Monte Carlo draws, and the right panels display the 95%
confidence intervals for each Monte Carlo draw. See Table OA-1 in the Supplemental Appendix
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for additional results.
The results in Figure 3 are self-explanatory and firmly support our theoretical results. When

outcome regression or propensity score models (but not necessarily both) are correctly specified, our
DR DDD estimators are appropriately centered (so they are unbiased), their confidence intervals
are the narrowest across all other estimators, and they still have appropriate coverage across the
first three DGPs (94.4%, 94.5%, and 94.6%, respectively). For instance, when all working models
are correctly specified, the average length of the 95% confidence interval of the M-3WFE estimator
is 7 times longer than our DR DDD estimator; this difference is much larger for the other considered
estimators. In fact, the performance of all other estimators in all our considered DGPs is poor,
as they have non-negligible bias, high RMSE, and poor coverage properties. In DGP 4, when
all working models are misspecified, we note that our estimator is biased, directly affecting the
confidence intervals’ coverage probabilities. None of the considered DDD estimators perform well
when all working models are misspecified (DGP 4), highlighting that all estimators indeed depend
on modeling assumptions.

5.2 Simulations for DDD with variation in treatment timing

We now discuss the staggered DDD setup with three time periods, t “ 1, 2, 3, three enabling
groups, S P t2, 3,8u, and two eligibility groups Q P t0, 1u. We abstract from covariates and defer
a discussion about them to the Supplemental Appendix.

Each unit i, we have that pS“2,Q“0 “ 0.20, pS“2,Q“1 “ 0.15, pS“3,Q“0 “ 0.30, pS“3,Q“1 “ 0.20,
pS“8,Q“0 “ 0.05, and pS“8,Q“1 “ 0.10. We then randomly assign the realized value of pS,Qq based
on the above distribution. The potential outcomes are generated as

Yi,1p8q “ p1 ` Qiqα ` νipSi, Qiq ` εi,1p8q

Yi,2p8q “ p2 ` Qiqα ` 1.1νipSi, Qiq ` εi,2p8q

Yi,3p8q “ p3 ` Qiqα ` 1.2νipSi, Qiq ` εi,3p8q

Yi,2p2q “ p2 ` Qiqα ` 1.1νipSi, Qiq ` ATT p2, 2qQi ` εi,2p2q (5.4)
Yi,3p2q “ p3 ` Qiqα ` 1.2νipSi, Qiq ` ATT p2, 3qQi ` εi,3p2q

Yi,3p3q “ p3 ` Qiqα ` 1.2νipSi, Qiq ` ATT p3, 3qQi ` εi,3p3q,

where we set α “ 278.5, ATT p2, 2q “ 10, ATT p2, 3q “ 20, ATT p3, 3q “ 25, all εi,tp¨q are
independent standard normal, and νipSi, Qiq is an unobserved heterogeneity term that we for-
mally define in the Supplemental Appendix B.2. The observed data is represented as Wi “

tYi,1, Yi,2, Yi,3, Si, Qiu
n
i“1, where the Yi,1 “ Yi,1p8q, Yi,2 “ Yi,2p2q for units with Si “ 2, Qi “ 1, and

Yi,2 “ Yi,2p8q otherwise, and Yi,3 “ Yi,3p3q for units with Si “ 3, Qi “ 1, Yi,3 “ Yi,3p2q for units
with Si “ 2, Qi “ 1, and Yi,3 “ Yi,3p8q for all other units. In what follows, we focus our attention
on estimators for ATT p2, 2q, though we compare estimators for ATT p2, 3q and ATT p3, 3q in the
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Figure 3: Monte Carlo Simulation Results for DDD: two-period setup with covariates
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(a) DGP 1: All working models are correctly specified

DRDDD

3WFE

DRDID−DIF

M−3WFE

−15 −10 −5 0

M−3WFE

DRDID−DIF

3WFE

DRDDD
−15 −10 −5 0 5

(b) DGP 2: Outcome working models are correctly specified
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(c) DGP 3: Propensity-score working models are correctly correct
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(d) DGP 4: All working models are misspecified
Notes: Simulation designs as discussed in text, with n “ 5, 000 and 1, 000 Monte Carlo repetitions. True ATT p2, 2q is zero and is
indicated in the solid vertical line in all panels. 3WFE corresponds to the OLS estimates of β̃3wfe based on (3.3). M-3WFE corresponds
to the OLS estimates of β̌3wfe based on (3.4). DRDID-DIF corresponds to the difference between two doubly robust DiD estimators
(Sant’Anna and Zhao, 2020). DRDDD corresponds to our proposed doubly robust DDD estimator described in (3.5). All densities
(left) and confidence intervals (right) are computed across all simulation draws. Light grey areas in the right plots indicate confidence
intervals that exclude the true ATT p2, 2q, where increased prominence suggests lower empirical coverage.
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Supplemental Appendix B.2. We consider n “ 5, 000 here and refer to Supplemental Appendix
B.2 for information on other sample sizes.

We compare the performance of three staggered DDD estimators for the ATT p2, 2q as in Section
3.2. More precisely, we consider our optimally GMM-weighted estimator zATT optpg, tq as defined
in (3.8), which is a special case of the (4.12) without covariates, i.e., with Xi “ 1 for all units;
we refer to this estimator as DDDopt. We also consider our DDD estimator that uses never-
treated units as the comparison group as defined in (3.7) with gc “ 8; we refer to this estimator
as DDDnev.11. Finally, we consider a DDD estimator that pools all not-yet-treated units a la
Callaway and Sant’Anna (2021), zATT cs-nytpg, tq, as defined in (3.6); we refer to this estimator
as DDDcs-nyt. Our theoretical results indicated that DDDopt and DDDnev should both be valid
DDD estimators under our identification assumptions. At the same time, we have no statistical
guarantee about the performance of DDDcs-nyt. Our theoretical results also suggest that DDDopt

should be more precisely estimated than DDDnev, as it uses more information.

Figure 4: Monte Carlo Simulation Results for DDD: staggered setup without covariates
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(a) Comparison across the three DDD estimators

DDDopt
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DDDnev

DDDopt

9.6 10.0 10.4

(b) Comparing the performance of DDDnev and DDDopt

Notes: Simulation designs are detailed in the text, using n “ 5, 000 and 1,000 Monte Carlo repetitions. The true ATT p2, 2q is 10,
marked by a solid vertical line in all panels. DDDnev denotes our DDD estimator with gc “ 8 from Equation (4.1). DDDopt is our
proposed DDD estimator from Equation (4.12). DDDcs´nyt is the estimator pooling all not-yet-treated units as defined in (3.6). In the
top-left panel, we plot the densities of the DDDnev, DDDopt, and DDDcs´nyt estimates across all simulation draws. The bottom-left
panel zooms into the densities for DDDnev and DDDopt. The top-right panel shows the confidence intervals for these estimators, while
the bottom-right panel focuses on DDDnev and DDDopt only. Light grey areas in the right plots indicate confidence intervals that
exclude the true ATT p2, 2q, where increased prominence suggests lower empirical coverage.

Figure 4 summarizes our simulation results; see also Table OA-2 in the Supplemental Appendix.
11 This estimator is a special case of (4.8) when covariates are trivial
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Panel (a) of Figure 4 compares the performance of the three estimators. As it is evident, DDDcs-nyt

is severely biased in our design, and its confidence interval never covered the true ATT p2, 2q in the
Monte Carlo draws. This result further highlights that proceeding as if DDD is just the difference
of two DiD procedures can lead to misleading conclusions. At the same time, the simulations
highlight that DDDnev and DDDopt are unbiased and have good coverage properties, 93.2% and
95%, respectively. In Panel (b), we drop DDDcs-nyt and focus on comparing the performance of our
two proposed DDD estimators. As the plot makes it clear, the gains in efficiency of using all not-yet-
treated comparison groups as inDDDopt are notable. The average length of the confidence intervals
of DDDnev is more than 50% higher than that of DDDopt. Thus, in practice, we recommend
favoring DDDopt, especially when the sample size of the never-enabling comparison group is low.

6 Concluding remarks
This paper studied DDD estimators, paying close attention to situations where covariates are im-
portant for identification and to setups with staggered treatment adoption. Our findings challenge
the conventional wisdom that DDD can be understood as the difference between two DiDs. We
showed that when DDD-type parallel trends hold after conditioning on covariates, DDD estimators
cannot generally be expressed as such, even in cases with only two time periods. In addition, when
treatment adoption is staggered, pooling all not-yet-treated units a la Callaway and Sant’Anna
(2021) is not generally valid, and proceeding as such can lead to misleading conclusions even when
covariates are not crucial for the DDD identification arguments. These results highlight the need
for more careful consideration when applying DDD strategies.

To address these challenges, we proposed DR DDD estimators that can appropriately han-
dle covariates and can also be used in DDD setups with staggered treatment adoption. Impor-
tantly, we proposed a DR DDD estimator that leverages information across different comparison
groups, and our simulation results highlighted that the gains in precision can be substantial com-
pared to alternatives. As such, we recommend practitioners to favor our proposed DDD estimator
zATT dr,optpg, tq in applications. We are finishing an R package that will automate all these DDD
estimators, hopefully making it easier to adopt.
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Better Understanding Triple Differences Estimators:
Supplemental Appendix
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This Supplementary Appendix includes: (a) proofs for the results presented in the main
paper; and (b) details about the data-generating process (DGP) used in the Monte Carlo
simulations to illustrate the finite sample properties of our DR DDD method.

A Proofs of Main Results
We begin by proving auxiliary lemmas that will be used later to establish the main results of
the paper. Initially, consider the conditional ATT pg, tq, and for simplicity, we omit the unit
indexing i.

CATTXpg, tq ” ErYtpgq ´ Ytp8q|X,S “ g,Q “ 1s

Lemma A.1. Let Assumptions S, SO, NA, and DDD-CPT hold. Then, for all g P Gtrt,
t P t2, . . . , T u, and gc P S such that t ě g and gc ą t,

CATTXpg, tq “ pErYt ´ Yg´1|X,S “ g,Q “ 1s ´ ErYt ´ Yg´1|X,S “ g,Q “ 0sq

´ pErYt ´ Yg´1|X,S “ gc, Q “ 1s ´ ErYt ´ Yg´1|X,S “ gc, Q “ 0sq almost surely.

Proof. All equalities below are understood to hold almost surely (a.s.), conditioning on X

throughout.

CATTXpg, tq “ ErYtpgq ´ Yg´1p8q|X,S “ g,Q “ 1s ´ ErYtp8q ´ Yg´1p8q|X,S “ g,Q “ 1s

“ ErYtpgq ´ Yg´1p8q|X,S “ g,Q “ 1s ´ ErYtp8q ´ Yg´1p8q|X,S “ g,Q “ 0s

´ ErYtp8q ´ Yg´1p8q|X,S “ g1, Q “ 1s ` ErYtp8q ´ Yg´1p8q|X,S “ g1, Q “ 0s

“ ErYt ´ Yg´1|X,S “ g,Q “ 1s ´ ErYt ´ Yg´1|X,S “ g,Q “ 0s

´ ErYt ´ Yg´1|X,S “ gc, Q “ 1s ` ErYt ´ Yg´1|X,S “ gc, Q “ 0s,

where the first equality is derived by algebraically adding and subtracting the term ErYg´1p8q|X,S “

g,Q “ 1s. The second equality is obtained based on Assumption DDD-CPT, and the final
equality arises from the definition in (2.1) along with Assumption NA.

Proof of Theorem 4.1
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Proof. We start by showing that ATT pg, tq “ ATTra,gcpg, tq. Given Lemma A.1,

ATT pg, tq “ ErCATTxpg, tq|S “ g,Q “ 1s

“ E rErYt ´ Yg´1|X,S “ g,Q “ 1s|S “ g,Q “ 1s ´ E
„

ErYt ´ Yg´1|X,S “ g,Q “ 0s

` ErYt ´ Yg´1|X,S “ gc, Q “ 1s ´ ErYt ´ Yg´1|X,S “ gc, Q “ 0s

ˇ

ˇ

ˇ

ˇ

S “ g,Q “ 1

ȷ

“ ErYt ´ Yg´1|S “ g,Q “ 1s ´ E
„

mS“g,Q“0
Yt´Yg´1

pXq

` mS“gc,Q“1
Yt´Yg´1

pXq ´ mS“gc,Q“0
Yt´Yg´1

pXq

ˇ

ˇ

ˇ

ˇ

S “ g,Q “ 1

ȷ

“ E
”

Yt ´ Yg´1 ´ mS“g,Q“0
Yt´Yg´1

pXq ´ mS“gc,Q“1
Yt´Yg´1

pXq ` mS“gc,Q“0
Yt´Yg´1

pXq|S “ g,Q “ 1
ı

“ E
”

wS“g,Q“1
trt pS,Qq

´

Yt ´ Yg´1 ´ mS“g,Q“0
Yt´Yg´1

pXq ´ mS“gc,Q“1
Yt´Yg´1

pXq ` mS“gc,Q“0
Yt´Yg´1

pXq

¯ı

Hence, we have established that ATT pg, tq “ ATTra,gcpg, tq. Our next objective is to demon-
strate the equality ATT pg, tq “ ATT ipw,gcpg, tq. Specifically, we aim to prove that

ErwS“g,Q“1
g1,q1 pS,Q,Xq ¨ pYt ´ Yg´1qs “

Er1tS “ g,Q “ 1u ¨ ErYt ´ Yg´1|X,S “ g1, Q “ q1ss

Er1tS “ g,Q “ 1us
.

By LIE and conditional probabilities, we observe that

E

«

1tS “ g1, Q “ q1u ¨ pS“q,Q“1
g1,q1 pXq

1 ´ pS“q,Q“1
g1,q1 pXq

¨ pYt ´ Yg´1q

ff

“ E
„

Er1tS “ g,Q “ 1u|Xs ¨ 1tS “ g1, Q “ q1u

Er1tS “ g1, Q “ q1u|Xs
¨ pYt ´ Yg´1q

ȷ

“ E
„

Er1tS “ g,Q “ 1u|Xs

Er1tS “ g1, Q “ q1u|Xs
E
“

1tS “ g1, Q “ q1u ¨ pYt ´ Yg´1q|X
‰

ȷ

“ E
“

Er1tS “ g,Q “ 1u|Xs ¨ E
“

pYt ´ Yg´1q|X,S “ g1, Q “ q1
‰‰

“ E
“

1tS “ g,Q “ 1u ¨ E
“

pYt ´ Yg´1q|X,S “ g1, Q “ q1
‰‰

(A.1)

Given that

E

«

1tS “ g1, Q “ q1u ¨ pS“q,Q“1
g1,q1 pXq

1 ´ pS“q,Q“1
g1,q1 pXq

ff

“ E
„

Er1tS “ g,Q “ 1u|Xs ¨ 1tS “ g1, Q “ q1u

Er1tS “ g1, Q “ q1u|Xs

ȷ

“ E
„

Er1tS “ g,Q “ 1u|Xs ¨ Er1tS “ g1, Q “ q1u|Xs

Er1tS “ g1, Q “ q1u|Xs

ȷ

“ E rEr1tS “ g,Q “ 1u|Xss

“ Er1tS “ g,Q “ 1us. (A.2)
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Combining (A.1) and (A.2)

ErwS“g,Q“1
g1,q1 pS,Q,Xq ¨ pYt ´ Yg´1qs “

E r1tS “ g,Q “ 1u ¨ E rpYt ´ Yg´1q|X,S “ g1, Q “ q1ss

Er1tS “ g,Q “ 1us

“ E rErYt ´ Yg´1|X,S “ g1, Q “ q1s|S “ g,Q “ 1s

Thus, analogous reasoning as in RA demonstrates that ATT pg, tq “ ATT ipw,gcpg, tq. Finally,
we need to show that ATT pg, tq “ ATTdr,gcpg, tq.

ATT dr,gc pg, tq

“ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“g,Q“0
Yt´Yg´1

pXq

¯ı

` E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,1
pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“gc,Q“1
Yt´Yg´1

pXq

¯ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,0
pS,Q,Xq

¯´

Yt ´ Yg´1 ´mS“gc,Q“0
Yt´Yg´1

pXq

¯ı

“ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

pYt ´ Yg´1q

ı

` E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,1
pS,Q,Xq

¯

pYt ´ Yg´1q

ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

gc,0
pS,Q,Xq

¯

pYt ´ Yg´1q

ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“g,Q“0
Yt´Yg´1

pXq

ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“gc,Q“1
Yt´Yg´1

pXq

ı

` E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“gc,Q“0
Yt´Yg´1

pXq

ı

“ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

pYt ´ Yg´1q

ı

´ E
”´

wS“g,Q“1
gc,1

pS,Q,Xq ´ wS“g,Q“1
gc,0

pS,Q,Xq

¯

pYt ´ Yg´1q

ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“g,Q“0
Yt´Yg´1

pXq

ı

´ E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“gc,Q“1
Yt´Yg´1

pXq

ı

` E
”´

wS“g,Q“1
trt pS,Qq ´ wS“g,Q“1

g,0 pS,Q,Xq

¯

mS“gc,Q“0
Yt´Yg´1

pXq

ı

“ ATT pg, tq

´
1

Er1tS “ g,Q “ 1us
E
„ˆ

1tS “ g,Q “ 1u ´
1tS “ g,Q “ 0uEr1tS “ g,Q “ 1u|Xs

Er1tS “ g,Q “ 0u|Xs

˙

mS“g,Q“0
Yt´Yg´1

pXq

ȷ

´
1

Er1tS “ g,Q “ 1us
E
„ˆ

1tS “ g,Q “ 1u ´
1tS “ gc, Q “ 1uEr1tS “ g,Q “ 1u|Xs

Er1tS “ gc, Q “ 1u|Xs

˙

mS“gc,Q“1
Yt´Yg´1

pXq

ȷ

`
1

Er1tS “ g,Q “ 1us
E
„ˆ

1tS “ g,Q “ 1u ´
1tS “ gc, Q “ 0uEr1tS “ g,Q “ 1u|Xs

Er1tS “ gc, Q “ 0u|Xs

˙

mS“gc,Q“0
Yt´Yg´1

pXq

ȷ

“ ATT pg, tq ´
1

Er1tS “ g,Q “ 1us
E
”

pEr1tS “ g,Q “ 1u|Xs ´ Er1tS “ g,Q “ 1u|Xsq ¨mS“g,Q“0
Yt´Yg´1

pXq

ı

´
1

Er1tS “ g,Q “ 1us
E
”

pEr1tS “ g,Q “ 1u|Xs ´ Er1tS “ g,Q “ 1u|Xsq ¨mS“gc,Q“1
Yt´Yg´1

pXq

ı

`
1

Er1tS “ g,Q “ 1us
E
”

pEr1tS “ g,Q “ 1u|Xs ´ Er1tS “ g,Q “ 1u|Xsq ¨mS“gc,Q“0
Yt´Yg´1

pXq

ı

“ ATT pg, tq,
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The second and third equalities result from straightforward algebraic manipulations. The
fourth equality derives from ATT pg, tq “ ATT ipw,gcpg, tq and references equations (A.1) and
(A.2). The fifth equality is a consequence of the LIE. This concludes the proof.

Proof of Corollary 4.1

Proof. Based on results from Theorem 4.1, it is established that for any g P Gtrt and t P

t2, . . . , T u where t ě g, and for gc P S such that gc ą t, the following holds: ATT pg, tq “

ATTdr,gcpg, tq. Multiplying both sides of the previous expression by an arbitrary weight wg,t
gc

and summing over all admissible comparison groups gives
ÿ

gcPGg,t
c

wg,t
gc ATT pg, tq “

ÿ

gcPGg,t
c

wg,t
gc ATTdr,gcpg, tq

ATT pg, tq
ÿ

gcPGg,t
c

wg,t
gc

loooomoooon

“1

“
ÿ

gcPGg,t
c

wg,t
gc ATTdr,gcpg, tq

ATT pg, tq “
ÿ

gcPGg,t
c

wg,t
gc ATTdr,gcpg, tq.

The left-hand side of the second equality simplifies because ATT pg, tq does not depend on
gc; allowing us to take it outside the summation. Since the weights sum to one, the desired
result is obtained.

Proof of Theorem 4.2

Proof. For the case of zATT dr,gcpg, tq, Theorem 4.1 establishes thatATT pg, tq is point-identified
for all g P Gtrt, t P t2, . . . , T u, and gc P Gg,t

c such that t ě g. Additionally, we observe that
zATT dr,gcpg, tq is comprised of a function involving three DR DiDs. Therefore, the asymp-
totic linear representation of

?
n
´

zATT dr,optpg, tq ´ ATT pg, tq
¯

follows from Theorem A.1(a)
in Sant’Anna and Zhao (2020). This is due to the fact that ψg,t

gc pWi;κ
g,t
0,gcq is a weighted sum of

the influence functions for each DR DiD, with weights reflecting the number of units in each
of them. The asymptotic normality follows from the Lindeberg-Lévy central limit theorem.

According to Corollary 4.1, the estimator zATT dr,optpg, tq implies that ATT pg, tq is over-
identified. This means that different gc P Gg,t

c can be used, and any weighted sum of these
estimands will identify our parameter of interest. For each comparison group gc, the estimator
zATT dr,optpg, tq is determined by a function involving three DR DiD terms. Consequently, its
asymptotic linear representation, as established in Theorem A.1(a) from Sant’Anna and Zhao
(2020), is modified by the factor 11Ω´1

g,t {11Ω´1
g,t1. This adjustment reflects the incorporation

of the kg,t ˆ1 vector comprising all RIFdr,gcpg, tq for every gc P Gg,t
c , given that ErIFdrpg, tqs “
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0. As before, asymptotic normality follows from an implementation of the Lindeberg-Lévy
central limit theorem.

To demonstrate that Ωg,t,opt “
`

11Ω´1
g,t1

˘´1
ď Ωg,t,gc for any gc P Gg,t

c , we can reformulate
our minimum variance problem into a GMM problem. This involves a vector of moment
conditions represented as ErRIFdrpg, tq ´ θg,ts “ 0. Under the conventional regularity con-
ditions that underpin GMM theory (Newey and McFadden, 1994), the asymptotic variance
associated with any set of weights w is expressed as:

Ωg,t,w “ p11W1q´111WΩg,tW1p11W1q´1

where W denotes any positive definite weight matrix. According to Efficient GMM theory,
choosing W “ Ω´1

g,t minimizes the asymptotic variance, leading to Ωg,t,opt “
`

11Ω´1
g,t1

˘´1.
More generally, for any W ą 0, we have:

p11W1q´111WΩg,tW1p11W1q´1 ´
`

11Ω´1
g,t1

˘´1
ą 0

Consequently, it follows that Ωg,t,opt ď Ωg,t,w.

Proof of Corollary 4.2

Proof. The population event-study parameter is defined by ESpeq “
ř

gPGtrt
PpG “ g|G`e P

r1, T sq ¨ ATT pg, g ` eq and its sample analogue is provided by Equation (4.13). By adding
and subtracting the term PpG “ g|G ` e P r1, T sq ¨ zATT dr,optpg, tq, followed by multiplying
the bias term by

?
n, we get the following expression

?
n
´

xESdr,optpeq ´ ESpeq
¯

“
?
n

ÿ

gPGtrt

PpG “ g|G ` e P r1, T sq ¨

´

zATT dr,optpg, tq ´ ATT pg, tq
¯

`
?
n

ÿ

gPGtrt

pPnpG “ g|G ` e P r1, T sq ´ PpG “ g|G ` e P r1, T sqq ¨ ATT pg, tq ` opp1q.

Given the asymptotic linear representation of both
?
npzATT dr,optpg, tq ´ ATT pg, tqq and

?
npPnpG “ g|G ` e P r1, T sq ´ PpG “ g|G ` e P r1, T sqq as stated in Theorem 4.2 and

Equation (4.19), respectively, we can substitute these expressions into the representation
above and arrange the summation over i “ 1, . . . , n to obtain

?
n
´

yESdr,optpeq ´ ESpeq
¯

“
1

?
n

n
ÿ

i“1

”

ÿ

gPGtrt

`

PpG “ g|G` e P r1, T sq ¨
11Ω´1

g,t

11Ω´1
g,t1

ψg,tpWi;κ
g,t
0 q ` ξg,epWiq ¨ATT pg, tq

˘

ı

looooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooon

les,eopt pWiq

`opp1q.

As before, asymptotic normality is established through the Lindeberg-Lévy central limit
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theorem. This concludes the proof.

B Additional Details about Monte Carlo Simulations
This section provides additional details about the Monte Carlo designs discussed in the main
text.

B.1 More details on two-period DDD setup with covariates

As discussed in Section 5.1, we considered a two-period DDD setup with covariates where,
for a generic four-dimensional vector O, the conditional probability of each unit belonging to
a subgroup pg, qq P t2,8u ˆ t0, 1u is

PrS “ g,Q “ q|Os “ pS“g,Q“qpOq “
exppf ps

S“g,Q“qpOqq
ř

pg,qqPSdes-1ˆt0,1u exppf ps
S“g,Q“qpOqq

, (B.1)

such that, for each pg, qq P Sdes-1 ˆt0, 1u, we define the linear process f ps
S“gc,Q“qpOq “ cO1γgc,q,

where c is a scalar that guarantees reasonable overlap, and γgc,q is a 4ˆ1 vector of coefficients
for each variable in O given by

γ8,0 “

¨

˚

˚

˚

˚

˝

´1

0.5

´0.25

´0.1

˛

‹

‹

‹

‹

‚

; γ8,1 “

¨

˚

˚

˚

˚

˝

´0.5

2

0.5

´0.2

˛

‹

‹

‹

‹

‚

; γ2,0 “

¨

˚

˚

˚

˚

˝

3

´1.5

0.75

´0.3

˛

‹

‹

‹

‹

‚

; and c “

$

’

’

’

&

’

’

’

%

0.2, if S “ 8, Q “ 0

0.2, if S “ 8, Q “ 1

0.05, if S “ 2, Q “ 0

In this design, the probabilities for each subgroup are denoted as
␣

pS“2,Q“0pOq, pS“2,Q“1pOq,
pS“8,Q“0pOq, pS“8,Q“1pOq

(

, and their sum is equal to one. Define the random variable
U „ Uniformr0, 1s. The assignment process to each group is defined as in (5.2).

The potential outcomes are defined as in (5.3). We define f regpO,Sq as

f regpO,Sq “ 1tSi “ 2u ¨ f reg
S“2pOq ` 1tSi “ 8u ¨ f reg

S“8pOq,

with f reg
S“gpOq “ α ` O1βg, with α “ 2010, β2 “ p27.4, 13.7, 13.7, 13.7q1 and β8 “ 0.5β2. We

define the unobserved heterogeneity term νipOi, Si, Qiq as

νipOi, Si, Qiq
d
„ Np1tSi “ 2uQif

reg
S“2pOiq ` 1tSi “ 8uQif

reg
S“8pOiq, 1q.

Finally, as discussed in our main text, we allow misspecification of propensity score and/or
outcome regression models. In all four DGPs, the observed data isWi “ tYi,1, Yi,2, Si, Qi, Xiu

n
i“1,

where the covariates Xi are generated as follows. Let Zi “ pZi,1, Zi,2, Zi,3, Zi,4q1 d
„ Np0, I4q.

The observed vector of covariates Xi “ pXi,1, Xi,2, Xi,3, Xi,4q
1 where for every k “ 1, ¨ ¨ ¨ , 4,
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Xk “ pX̃k ´ ErX̃ksq

M

b

VarpX̃kq such that

X̃1 “ exp p0.5Z1q ,

X̃2 “ 10 ` Z2

L

p1 ` exp pZ1qq ,

X̃3 “ p0.6 ` Z1Z3{25q
3 ,

X̃4 “ p20 ` Z1 ` Z4q
2 .

These transformations build on Kang and Schafer (2007) and Sant’Anna and Zhao (2020).
We consider four different DGPs depending on whether the propensity score and/or the
outcome regressions are misspecified. The specifics are outlined below:

– DGP 1: All nuisance functions depend on X, namely f reg
S“gpXq and f ps

S“g,Q“qpXq. All
working models are correctly specified in this DGP, as X is observed in the data.

– DGP 2: Regression models depend on X, f reg
S“gpXq, and the propensity score depends

on Z f ps
S“g,Q“qpZq. The working model for propensity score is misspecified, whereas the

working models for the outcomes are correctly specified.

– DGP 3: Regression models depend on Z, f reg
S“gpZq, and propensity score depends on

X, f ps
S“g,Q“qpXq. The working model for propensity score is correctly specifies, whereas

the working models for the outcomes are misspecified.

– DGP 4: All nuisances functions depend on Z, namely f reg
S“gpZq and f ps

S“g,Q“qpZq. All
working models are misspecified.

We graphically illustrate the results in Figure 3 when n “ 5, 000. The following table
presents the traditional summary statistics for the Monte Carlo involving average bias, root
mean square error (RMSE), empirical 95% coverage probability, and the average length of
a 95% confidence interval under 1,000 Monte Carlo repetitions. We report these results for
n “ 1, 000, n “ 5, 000, and n “ 10, 000. These results are self-explanatory.
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Table OA-1: Monte Carlo results for ATT p2, 2q in DGP 1 – DGP 4, with two periods and covariates

DGP 1 DGP 2 DGP 3 DGP 4
Estimator Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI

n “ 1000

DRDDD -0.003 0.188 0.953 0.732 -0.008 0.185 0.944 0.729 0.032 1.606 0.952 6.310 -2.072 2.629 0.747 6.304
3WFE -9.298 10.301 0.674 22.431 -8.038 9.090 0.780 22.426 -4.985 6.160 0.977 24.794 -7.755 8.574 0.894 24.714
DRDID-DIF -2.681 3.361 0.762 8.100 -2.302 3.016 0.798 7.862 -1.280 2.515 0.911 8.514 -3.402 4.054 0.628 8.332
M-3WFE 1.192 1.809 0.855 5.275 0.865 1.621 0.903 5.331 1.188 2.219 0.898 7.177 -1.076 2.185 0.900 7.161

n “ 5000

DRDDD -0.002 0.083 0.944 0.324 0.000 0.084 0.951 0.323 -0.014 0.746 0.939 2.794 -2.019 2.141 0.190 2.792
3WFE -9.059 9.291 0.022 10.055 -7.929 8.156 0.069 10.065 -5.049 5.324 0.601 11.125 -7.563 7.733 0.101 11.097
DRDID-DIF -2.616 2.782 0.203 3.635 -2.270 2.442 0.283 3.520 -1.372 1.706 0.698 3.832 -3.326 3.463 0.064 3.755
M-3WFE 1.154 1.293 0.532 2.358 0.847 1.050 0.708 2.387 1.137 1.419 0.710 3.206 -0.985 1.284 0.777 3.197

n “ 10000

DRDDD 0.001 0.058 0.954 0.229 0.002 0.060 0.942 0.228 -0.008 0.495 0.944 1.973 -2.013 2.078 0.024 1.973
3WFE -9.248 9.349 0.000 7.106 -7.970 8.091 0.001 7.119 -5.108 5.231 0.146 7.870 -7.597 7.677 0.000 7.852
DRDID-DIF -2.686 2.759 0.010 2.568 -2.295 2.381 0.036 2.489 -1.405 1.556 0.480 2.716 -3.339 3.404 0.001 2.660
M-3WFE 1.153 1.226 0.223 1.667 0.829 0.935 0.520 1.688 1.138 1.272 0.499 2.267 -0.957 1.127 0.619 2.260

Notes: This table summarizes the Monte Carlo experiments for four distinct DGPs as discussed in Section 5.1. The DRDDD row includes our proposed
doubly robust estimators with gc “ 8. The 3WFE and M-3WFE rows display OLS estimates for 3WFE models in equations (3.3) and (3.4). The
DRDID-DIF row shows the difference between two Doubly Robust DiDs. Columns represent average bias, RMSE, coverage probability at 95% (Cov.
95), and average confidence interval length (ALCI) for each estimator. The 95% confidence intervals use point-wise asymptotic critical values. Results
span sample sizes n “ t1,000, 5,000, 10,000u over 1,000 simulations, with the true ATT p2, 2q being zero.
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B.2 More details on staggered DDD setups

We now provide more details about the simulation designs for staggered DDD as discussed in
Section 5.2. The potential outcomes are as defined in (5.4) with the unobserved heterogeneity
term νipSi, Qiq being defined as

νipSi, Qiq
d
„ Np1tSi “ 2up2 ` Qiqα ` 1tSi “ 2up2 ` Qiqα ` 1tSi “ 8uQiα, 1q, (B.2)

where α “ 278.5. All the other relevant information is described in Section 5.2.
As we summarize the simulation results in Section 5.2 via graphs, below we present a

more traditional summary of our simulation results using a table. We stress that, in period
3, all the considered DDD estimators coincide as there is only one possible comparison group
at that time period, the never-enabling units. This explains the results for ATT p2, 3q and
ATT p3, 3q in Table OA-2. The ATT p2, 2q results are self-explanatory and highlight that
(a) proceeding as if DDD is just the difference between two DiD procedures can lead to
misleading conclusions, (b) using our proposed DDD estimators bypasses these limitations,
and (c) the gains in precision of using our optimally weighted estimator can be large.

Table OA-2: Monte Carlo results for Staggered DDD without covariates

ATT p2, 2q ATT p2, 3q ATT p3, 3q

Estimator Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI

n “ 1000

DDDopt -0.003 0.192 0.956 0.748 -0.004 0.298 0.947 1.140 -0.007 0.286 0.941 1.083
DDDnev -0.001 0.287 0.947 1.131 -0.004 0.298 0.947 1.140 -0.007 0.286 0.941 1.083
DDDcs´nyt -15.815 16.034 0.000 10.833 -0.004 0.298 0.947 1.140 -0.007 0.286 0.941 1.083

n “ 5000

DDDopt -0.009 0.086 0.950 0.335 -0.007 0.134 0.938 0.511 0.001 0.127 0.935 0.487
DDDnev -0.012 0.135 0.932 0.507 -0.007 0.134 0.938 0.511 0.001 0.127 0.935 0.487
DDDcs´nyt -15.875 15.919 0.000 4.845 -0.007 0.134 0.938 0.511 0.001 0.127 0.935 0.487

n “ 10000

DDDopt 0.001 0.062 0.941 0.237 0.001 0.097 0.940 0.361 -0.001 0.090 0.941 0.344
DDDnev 0.000 0.094 0.941 0.359 0.001 0.097 0.940 0.361 -0.001 0.090 0.941 0.344
DDDcs´nyt -15.897 15.918 0.000 3.428 0.001 0.097 0.940 0.361 -0.001 0.090 0.941 0.344

Notes: This table summarizes the Monte Carlo experiments for the DGP as discussed in Section 5.2. DDDnev
denotes our DDD estimator with gc “ 8 from Equation (4.1). DDDopt is our proposed DDD estimator from
Equation (4.12). DDDcs´nyt is the estimator pooling all not-yet-treated units as defined in (3.6). Columns
represent average bias, RMSE, coverage probability at 95% (Cov. 95), and average confidence interval length
(ALCI) for each estimator. The 95% confidence intervals use point-wise asymptotic critical values. Results span
sample sizes n “ t1,000, 5,000, 10,000u over 1,000 simulations, with the true ATT p2, 2q “ 10, ATT p2, 3q “ 20,
and ATT p3, 3q “ 25.
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B.3 Staggered DDD setups with covariates

In this section, we expand on the DGP mentioned in Section 5.2 by incorporating covariates
into the analysis. Similar to before, there are three time periods t “ 1, 2, 3, three enabling
groups S P t2, 3,8u, and two eligibility groups Q P t0, 1u.

Without loss of generality, we define f ps
S“g,Q“qpW q “ cqW

Jγg, @pg, qq P Sdes´2 ˆ t0, 1u,
where cq is a scalar controlling the overlap condition on the propensity scores, and γg is a
4 ˆ 1 vector of coefficients for each variable in W . For an arbitrary four-dimensional vector
O, the conditional probability of each unit belonging to a subgroup pg, qq P Sdes´2 ˆ t0, 1u is

PrG “ g,Q “ q | Os “ pS“g,Q“qpOq “
exppf ps

S“g,Q“qpOqq
ř

pg,qqPSdes´2ˆt0,1u exppf ps
S“g,Q“qpOqq

(B.3)

Then, we set cq “ 0.4 if Q “ 0, cq “ ´0.4 if Q “ 1 and,

γ2 “

¨

˚

˚

˚

˚

˝

´1

0.5

´0.25

´0.1

˛

‹

‹

‹

‹

‚

; γ3 “

¨

˚

˚

˚

˚

˝

´0.5

1

´0.1

´0.25

˛

‹

‹

‹

‹

‚

; γ8 “

¨

˚

˚

˚

˚

˝

´0.25

0.1

´1

´0.1

˛

‹

‹

‹

‹

‚

In this design, the probabilities for each subgroup are denoted as
␣

pS“2,Q“0pV q, pS“2,Q“1pV q,
pS“3,Q“0pV q, pS“3,Q“1pV q, pS“8,Q“0pV q, pS“8,Q“1pV q

(

, which sum to one. Define the random
variable U „ Uniformr0, 1s. The assignment process to each group is determined as follows:

pS,Qq :“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

p8, 0q, if U ď pS“8,Q“0pOq,

p8, 1q, if U ď
ř1

j“0 p
S“8,Q“jpOq,

p2, 0q, if U ď
ř1

j“0 p
S“8,Q“jpOq ` pS“2,Q“0pV q,

p2, 1q, if U ď
ř1

j“0 p
S“8,Q“jpOq `

ř1
j“0 p

S“2,Q“jpOq,

p3, 0q, if U ď
ř1

j“0 p
S“8,Q“jpOq `

ř1
j“0 p

S“2,Q“jpOq ` pS“3,Q“0pOq,

p3, 1q, if
ř1

j“0 p
S“8,Q“jpOq `

ř1
j“0 p

S“2,Q“jpOq ` pS“3,Q“0pOq ă U.

(B.4)

Next, we define the outcome regression component of our DGP. In this model, covariates
O enter the working model linearly. Let f regpOiq “ α`O1β, where α is a scalar and β is a 4ˆ1

vector of coefficients for each variable in O. We set α “ 210 and β “ p27.4, 13.7, 13.7, 13.7q1.
The untreated potential outcomes (which are observed for all units) at period t “ 1 are
defined as follows:

Yi,1p8q “ p1 ` Qiq ¨ f regpOiq ` νipOi, Si, Qiq ` εi,1p8q

where νipOi, Si, Qiq denotes a time-invariant unobserved heterogeneity with νipOi, Si, Qiq „
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NpMi ¨ f regpOiq ` Qi ¨ f regpOiq, 1q where Mi “ Si if Si P Gtrt, zero otherwise, and εi,1p8q „

Np0, 1q. Subsequently, we generate the potential outcomes at period t “ 2 for each g P G:

Yi,2p8q “ p2 ` Qiqf
regpOiq ` 2νipOi, Si, Qiq ` εi,2p8q

Yi,2p2q “ p2 ` Qiqf
regpOiq ` 2νipOi, Si, Qiq ` Qi ¨ ATT p2, 2q ` εi,2p2q

Yi,2p3q “ p2 ` Qiqf
regpOiq ` 2νipOi, Si, Qiq ` εi,2p3q

where εi,2p¨q „ Np0, 1q. The realized outcomes at t “ 2 are given by

Yi,2 “
ÿ

gPG
1tGi “ guYi,2pgq

Then, we generate the potential outcomes in the period t “ 3 for each g P G:

Yi,3p8q “ p3 ` Qiqf
regpOiq ` 3νipOi, Si, Qiq ` εi,3p8q

Yi,3p2q “ p3 ` Qiqf
regpOiq ` 3νipOi, Si, Qiq ` Qi ¨ ATT p2, 3q ` εi,3p2q

Yi,3p3q “ p3 ` Qiqf
regpOiq ` 3νipOi, Si, Qiq ` Qi ¨ ATT p3, 3q ` εi,3p3q

where εi,3p¨q „ Np0, 1q. The realized outcomes at t “ 3 are given by

Yi,3 “
ÿ

gPG
1tGi “ guYi,3pgq

Finally, we set ATT p2, 2q “ 10, ATT p2, 3q “ 20 and ATT p3, 3q “ 25. Given that we
account for potential misspecification of nuisance functions, we can proceed as outlined in
Section B.1. The observed data is Wi “ tYi,1, Yi,2, Yi,3, Si, Qi, Xiu

n
i“1, where covariates Xi and

Zi are generated in the same manner as described in Section B.1. Depending on whether
the propensity score and/or outcome regression are misspecified, these specifications will
result in four distinct DGPs. Table OA-3 presents summary statistics from 1,000 Monte
Carlo experiments, which include average bias, root mean squared error (RMSE), coverage
probability at 95%, and average confidence interval length. We provide these statistics for the
ATT p2, 2q under the design mentioned in the current section with sample sizes n “ 1, 000,
n “ 5, 000, and n “ 10, 000. Results for ATT p2, 3q and ATT p3, 3q are omitted to save space,
as they produce similar patterns. These results clearly illustrate the effectiveness of our
proposed estimator and align with findings from the previous sections.
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Table OA-3: Monte Carlo results for ATT p2, 2q in DGP 1 – DGP 4, with multiple periods and covariates

DGP 1 DGP 2 DGP 3 DGP 4
Estimator Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI Bias RMSE Cov. 95 ALCI

n “ 1000

DRDDDopt 0.009 0.236 0.943 0.901 -0.002 0.230 0.945 0.893 -0.175 3.300 0.943 12.396 -1.499 3.765 0.917 12.722
DRDDDnev 0.012 0.298 0.939 1.137 -0.002 0.288 0.937 1.121 -0.367 3.984 0.937 14.726 0.947 3.956 0.937 14.403
DRDDDcs´nyt -8.877 9.294 0.079 10.298 -8.138 8.546 0.123 10.280 -8.962 9.891 0.404 16.173 -11.244 12.075 0.232 16.642
DRCS-DIF -3.765 4.668 0.704 10.348 -4.377 5.109 0.608 10.116 -3.919 5.355 0.789 14.263 -6.866 7.767 0.520 14.161

n “ 5000

DRDDDopt 0.006 0.106 0.947 0.407 -0.002 0.105 0.935 0.399 0.083 1.450 0.953 5.629 -1.170 1.956 0.856 5.954
DRDDDnev 0.005 0.131 0.949 0.507 -0.005 0.131 0.944 0.497 0.012 1.746 0.948 6.639 1.128 2.032 0.900 6.568
DRDDDcs´nyt -8.949 9.028 0.000 4.557 -8.063 8.140 0.000 4.547 -8.636 8.821 0.005 7.192 -11.009 11.173 0.002 7.576
DRCS-DIF -3.793 3.983 0.108 4.566 -4.339 4.483 0.024 4.479 -3.844 4.165 0.333 6.356 -6.720 6.924 0.013 6.280

n “ 10000

DRDDDopt -0.001 0.073 0.955 0.289 -0.004 0.073 0.948 0.283 0.047 1.021 0.951 4.004 -1.088 1.544 0.820 4.249
DRDDDnev -0.004 0.091 0.956 0.359 -0.004 0.092 0.937 0.351 0.036 1.201 0.950 4.711 1.159 1.658 0.846 4.666
DRDDDcs´nyt -8.928 8.965 0.000 3.226 -8.111 8.151 0.000 3.211 -8.746 8.842 0.000 5.090 -11.108 11.188 0.000 5.373
DRCS-DIF -3.770 3.861 0.004 3.221 -4.347 4.415 0.000 3.170 -3.896 4.051 0.063 4.511 -6.852 6.941 0.000 4.419

Notes: This table presents the Monte Carlo experiments for the DGPs as detailed in the text. DDDnev denotes our DDD estimator with gc “ 8 from
Equation (4.1). DDDopt is our proposed DDD estimator from Equation (4.12). DDDcs´nyt is the estimator pooling all not-yet-treated units as defined
in (3.6). DRCS-DIF uses the differences between two DiDs following Callaway and Sant’Anna (2021) as described in Remark 4.1. Each column shows
average bias, RMSE, coverage probability at 95% (Cov. 95), and average confidence interval length (ALCI) for each estimator, using point-wise asymptotic
critical values for the confidence intervals. The results cover sample sizes n “ t1,000, 5,000, 10,000u over 1,000 simulations, with the true ATT p2, 2q “ 10.
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