Doubly Robust DDD estimators for the group-time average treatment effects.
ddd.Rd
ddd
is the main function for computing the Doubly Robust DDD estimators for the ATT, with balanced panel data.
It can be used with covariates and/or under multiple time periods. At its core, triplediff
employs
the doubly robust estimator for the ATT, which is a combination of the propensity score weighting and the outcome regression.
Furthermore, this package supports the application of machine learning methods for the estimation of the nuisance parameters.
Usage
ddd(
yname,
tname,
idname,
gname,
pname,
xformla,
data,
control_group = NULL,
base_period = NULL,
est_method = "dr",
weightsname = NULL,
boot = FALSE,
nboot = NULL,
cluster = NULL,
cband = FALSE,
alpha = 0.05,
use_parallel = FALSE,
cores = 1,
inffunc = FALSE,
skip_data_checks = FALSE
)
Arguments
- yname
The name of the outcome variable.
- tname
The name of the column containing the time periods.
- idname
The name of the column containing the unit id.
- gname
The name of the column containing the first period when a particular observation is treated. It is a positive number for treated units and defines which group the unit belongs to. It takes value 0 or Inf for untreated units.
- pname
The name of the column containing the partition variable (e.g., the subgroup identifier). This is an indicator variable that is 1 for the units eligible for treatment and 0 otherwise.
- xformla
The formula for the covariates to be included in the model. It should be of the form
~ x1 + x2
. Default isxformla = ~1
(no covariates).- data
A data frame or data table containing the data.
- control_group
Valid for multiple periods only. The control group to be used in the estimation. Default is
control_group = "notyettreated"
which sets as control group the units that have not yet participated in the treatment. The alternative iscontrol_group = "nevertreated"
which sets as control group the units that never participate in the treatment and does not change across groups or time periods.- base_period
Valid for multiple periods. Choose between a "varying" or "universal" base period. Both yield the same post-treatment ATT(g,t) estimates. Varying base period: Computes pseudo-ATT in pre-treatment periods by comparing outcome changes for a group to its comparison group from t-1 to t, repeatedly changing t. Universal base period: Fixes the base period to (g-1), reporting average changes from t to (g-1) for a group relative to its comparison group, similar to event study regressions. Varying base period reports ATT(g,t) right before treatment. Universal base period normalizes the estimate before treatment to be 0, adding one extra estimate in an earlier period.
- est_method
The estimation method to be used. Default is
"dr"
(doubly robust). It computes propensity score using logistic regression and outcome regression using OLS. The alternative arec("reg", "ipw")
.- weightsname
The name of the column containing the weights. Default is
NULL
. As part of data processing, weights are enforced to be normalized and have mean 1 across all observations.- boot
Logical. If
TRUE
, the function computes standard errors using the multiplier bootstrap. Default isFALSE
.- nboot
The number of bootstrap samples to be used. Default is
NULL
. Ifboot = TRUE
, the default isnboot = 999
.- cluster
The name of the variable to be used for clustering. The maximum number of cluster variables is 1. Default is
NULL
. Ifboot = TRUE
, the function computes the bootstrap standard errors clustering at the unit level setting as cluster variable the one inidname
.- cband
Logical. If
TRUE
, the function computes a uniform confidence band that covers all of the average treatment effects with fixed probability1-alpha
. In order to compute uniform confidence bands,boot
must also be set toTRUE
. The default isFALSE
.- alpha
The level of significance for the confidence intervals. Default is
0.05
.- use_parallel
Logical. If
TRUE
, the function runs in parallel processing. Valid only whenboot = TRUE
. Default isFALSE
.- cores
The number of cores to be used in the parallel processing. Default is
cores = 1
.- inffunc
Logical. If
TRUE
, the function returns the influence function. Default isFALSE
.- skip_data_checks
Logical. If
TRUE
, the function skips the data checks and go straight to estimation. Default isFALSE
.
Value
A ddd
object with the following basic elements:
- ATT
The average treatment effect on the treated.
- se
The standard error of the ATT.
- uci
The upper confidence interval of the ATT.
- lci
The lower confidence interval of the ATT.
- inf_func
The estimate of the influence function.
Examples
#----------------------------------------------------------
# Triple Diff with covariates and 2 time periods
#----------------------------------------------------------
set.seed(1234) # Set seed for reproducibility
# Simulate data for a two-periods DDD setup
df <- gen_dgp_2periods(size = 5000, dgp_type = 1)$data
head(df)
#> Key: <id>
#> id state partition time y cov1 cov2 cov3
#> <int> <num> <num> <int> <num> <num> <num> <num>
#> 1: 1 0 0 1 209.9152 -0.97080934 -1.1726958 2.3893945
#> 2: 1 0 0 2 417.5260 -0.97080934 -1.1726958 2.3893945
#> 3: 2 0 0 1 211.4919 0.02591115 0.2763066 0.1063123
#> 4: 2 0 0 2 420.3656 0.02591115 0.2763066 0.1063123
#> 5: 3 0 0 1 221.9431 0.97147321 -0.4292088 0.5012794
#> 6: 3 0 0 2 440.9623 0.97147321 -0.4292088 0.5012794
#> cov4 cluster
#> <num> <int>
#> 1: 0.2174955 39
#> 2: 0.2174955 39
#> 3: -0.1922253 29
#> 4: -0.1922253 29
#> 5: 1.1027248 44
#> 6: 1.1027248 44
att_22 <- ddd(yname = "y", tname = "time", idname = "id", gname = "state",
pname = "partition", xformla = ~cov1 + cov2 + cov3 + cov4,
data = df, control_group = "nevertreated", est_method = "dr")
summary(att_22)
#> Call:
#> ddd(yname = "y", tname = "time", idname = "id", gname = "state",
#> pname = "partition", xformla = ~cov1 + cov2 + cov3 + cov4,
#> data = df, control_group = "nevertreated", est_method = "dr")
#> =========================== DDD Summary ==============================
#> DR-DDD estimation for the ATT:
#> ATT Std. Error Pr(>|t|) [95% Ptwise. Conf. Band]
#> -0.0780 0.0828 0.3463 -0.2404 0.0843
#>
#> Note: * indicates that the confidence interval does not contain zero.
#> --------------------------- Data Info -----------------------------
#> Panel data
#> Outcome variable: y
#> Qualification variable: partition
#> No. of units at each subgroup:
#> treated-and-eligible: 1232
#> treated-but-ineligible: 1285
#> eligible-but-untreated: 1256
#> untreated-and-ineligible: 1227
#> --------------------------- Algorithms ------------------------------
#> Outcome Regression estimated using: OLS
#> Propensity score estimated using: Maximum Likelihood
#> --------------------------- Std. Errors ----------------------------
#> Level of significance: 0.05
#> Analytical standard errors.
#> Type of confidence band: Pointwise Confidence Interval
#> =====================================================================
#> See Ortiz-Villavicencio and Sant'Anna (2025) for details.
#----------------------------------------------------------
# Triple Diff with multiple time periods
#----------------------------------------------------------
data <- gen_dgp_mult_periods(size = 1000, dgp_type = 1)[["data"]]
ddd(yname = "y", tname = "time", idname = "id",
gname = "state", pname = "partition", xformla = ~cov1 + cov2 + cov3 + cov4,
data = data, control_group = "nevertreated", base_period = "varying",
est_method = "dr")
#> Call:
#> ddd(yname = "y", tname = "time", idname = "id", gname = "state",
#> pname = "partition", xformla = ~cov1 + cov2 + cov3 + cov4,
#> data = data, control_group = "nevertreated", base_period = "varying",
#> est_method = "dr")
#> =========================== DDD Summary ==============================
#> DR-DDD estimation for the ATT(g,t):
#> Group Time ATT(g,t) Std. Error [95% Pointwise Conf. Band]
#> 2 2 9.7245 0.3035 9.1297 10.3192 *
#> 2 3 20.0652 0.2920 19.4930 20.6375 *
#> 3 2 -0.0414 0.3073 -0.6437 0.5608
#> 3 3 25.1409 0.2815 24.5893 25.6925 *
#>
#> Note: * indicates that the confidence interval does not contain zero.
#> --------------------------- Data Info -----------------------------
#> Panel data
#> Outcome variable: y
#> Qualification variable: partition
#> Control group: Never Treated
#> No. of units per treatment group:
#> Units enabling treatment at period 3: 454
#> Units enabling treatment at period 2: 351
#> Units never enabling treatment: 195
#> --------------------------- Algorithms ------------------------------
#> Outcome Regression estimated using: OLS
#> Propensity score estimated using: Maximum Likelihood
#> --------------------------- Std. Errors ----------------------------
#> Level of significance: 0.05
#> Analytical standard errors.
#> Type of confidence band: Pointwise Confidence Interval
#> =====================================================================
#> See Ortiz-Villavicencio and Sant'Anna (2025) for details.